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1 IntroductionThis is a software package for solving the standard SDP problem:(P ) minX C �XAk �X = bk; k = 1; : : : ;m (1)X � 0;where Ak 2 Hn, C 2 Hn and b 2 IRm are given data, and X 2 Hn is the variable,possibly complex. Here Hn denotes the space of n � n Hermitian matrices, P � Qdenotes the inner product Tr(P �Q), and X � 0 means that X is positive semide�nite.We assume that the set fA1; : : : ; Akg is linearly independent. (Linearly dependentconstraints are allowed; these are detected and removed automatically. However,if this set is nearly dependent, transformation to a better-conditioned basis maybe advisable for numerical stability.) The software also solves the dual problemassociated with (P ): (D) maxy;Z bT yPmk=1 ykAk + Z = C (2)Z � 0;where y 2 IRm and Z 2 Hn are the variables.This package is written in Matlab version 5.0. It is available from the internetsites: http://www.math.nus.edu.sg/~mattohkc/index.htmlhttp://www.math.cmu.edu/~reha/sdpt3.htmlThe purpose of this software package is to provide researchers in SDP with acollection of reasonably e�cient and robust algorithms that can solve general SDPswith matrices of dimensions of the order of a hundred. If your problem is large-scale,you should probably use an implementation that exploits problem structure. Theonly structures we exploit in this package are sparsity and block-diagonal structure,whereMatlab cell arrays are used to handle dense and sparse blocks separately. Wehope that researchers in SDP may bene�t from the algorithmic and computationalframework provided by our software in developing their own algorithms. We alsohope that the computational results provided here will be useful for benchmarking.To facilitate other authors in evaluating the performance of their own algorithms, weinclude a few classes of SDP problems in this software package as well.Our software is designed for general SDPs, where we do not exploit any specialstructures present in the data A1; � � � ; Am and C except for sparsity and block diago-nal structures as mentioned above. For SDP problems where the data has additionalstructure, such as that arising from the SDP relaxations of the maximum cut or graphpartitioning problems, specialized algorithms such as the dual-scaling algorithm pro-posed by Benson et al. [5] and the nonsmooth methods proposed by Helmberg and2
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Rendl [13] and Burer and Monteiro [10] can certainly outperform a general purposecode like ours by orders of magnitude to achieve moderately accurate solutions. How-ever, for problems with sparsity and structure that is not well understood (and so aspecialized code is not available), our generic approach exploiting sparsity is worthtrying.A special feature that distinguishes this SDP software from others (e.g., [4],[8],[7],[12],[31]) is that complex data are allowed, a feature shared by the SeDuMi code of Sturm[25]. But note that b and y must be real. Another feature of our package, also sharedby the software of [7],[12] and [25], is that the sparsity of matrices Ak is fully exploitedin the computation of the Schur complement matrix required at each iteration of ourSDP algorithms. Lastly, we calculate the step-lengths required for the iterates in eachinterior-point iteration via the Lanczos iteration [24]. This method is cheaper com-pared to the backtracking scheme with Cholesky factorization and the QR algorithmcurrently employed in all the SDP softwares mentioned in this paper.Part of the codes for real symmetric matrices is originally based on those byAlizadeh, Haeberly, and Overton, whose help we gratefully acknowledge.Section 2 discusses our infeasible-interior-point algorithms, while our homogeneousself-dual methods are described in Section 4. Initialization is detailed in Section 4,and Section 5 outlines how the package is called and input and output arguments. InSection 6 we give some examples, while Section 7 contains some sample runs. Section8 describes some specialized routines for computing the Schur complement matrix,and we conclude in Section 8 with some numerical results.2 Infeasible-interior-point algorithms2.1 The search directionFor later discussion, let us �rst introduce the operator A de�ned byA : Hn �! IRm;AX = 0B@ A1 �X...Am �X 1CA : (3)The adjoint of A with respect to the standard inner products in Hn and IRm is theoperator A� : IRm �! Hn;A�y = Pmk=1 ykAk: (4)The main step at each iteration of our algorithms is the computation of the searchdirection (�X;�y;�Z) from the symmetrized Newton equation (with respect to aninvertible matrix P which is usually chosen as a function of the current iterate X;Z)given below. 3
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A��y + �Z = Rd := C � Z �A�yA�X = rp := b�AXE�X + F�Z = Rc := ��I �HP (XZ); (5)where � = X �Z=n and � is the centering parameter. Here HP is the symmetrizationoperator de�ned by HP : Cn�n �! HnHP (U) = 12 �PUP�1 + P��U�P �� ; (6)and E and F are the linear operatorsE = P � P��Z; F = PX� P��; (7)where R� T denotes the linear operator de�ned byR� T : Hn �! HnR� T (U) = 12 [RUT � + TUR�] : (8)Assuming that m = O(n), we compute the search direction via a Schur complementequation as follows (the reader is referred to [3] and [26] for details). First compute�y from the Schur complement equationM�y = h; (9)where M = AE�1FA�; (10)h = rp + AE�1F(Rd) � AE�1(Rc): (11)Then compute �X and �Z from the equations�Z = Rd �A��y (12)�X = E�1Rc � E�1F(�Z): (13)If m � n, solving (9) by a direct method is overwhelmingly expensive; in thiscase, the user should consider using an implementation that solves (9) by an iterativemethod such as the conjugate gradient or quasi-minimal residual method [23]. Inour package, (9) is solved by a direct method such as LU or Cholesky decompositionwith the implicit assumption that m = O(n) and m is at most a few hundred. If theSDP data is dense, we recommend that n is no more than about 200 so that the SDPproblem can be comfortably solved on a fast workstation with, say, 200MHz speed.4
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2.2 Computation of speci�c search directionsIn this package, the user has four choices of symmetrizations resulting in four di�erentsearch directions, namely,(1) the AHO direction [3], corresponding to P = I;(2) the HKM direction [14],[16],[21], corresponding to P = Z1=2;(3) the NT direction [26], corresponding to P = N�1, where N is the unique matrixsuch that D := N�ZN = N�1XN�� is a diagonal matrix (then W := NN� isthe NT scaling matrix with WZW = X); and(4) the GT direction [27], corresponding to P = �D1=2 �G��, where the matrices �D and�G are de�ned as follows. Suppose X = G�G and Z = H�H are the Choleskyfactorizations of X and Z respectively. Let the SVD of GH� be GH� = U�V �.Let 	 and � be positive diagonal matrices such that the equalities U�G = 	 �Gand V �H = � �H hold, with all the rows of �G and �H having unit norms. Then�D = �(	�)�1.To describe our implementation SDPT3, a discussion on the e�cient computationof the Schur complement matrixM is necessary, since this is the most expensive stepin each iteration of our algorithms where usually at least 50% to 80% of the totalCPU time is spent. From equation (10), it is easily shown that the (i; j) element ofM is given by Mij = Ai � E�1F(Aj): (14)Thus for a �xed j, computing �rst the matrix E�1F(Aj) and then taking its innerproduct with each Ai, i = 1; : : : ;m, give the jth column of M .However, the computation of M for the four search directions mentioned abovecan also be arranged in a di�erent way. The operator E�1F corresponding to thesefour directions can be decomposed generically asE�1F(Aj) = (R�� T �)(D1 � [(D2� I)(R� T (Aj))]); (15)where � denotes the Hadamard (elementwise) product and the matrices R, T , D1,and D2 depend only on X and Z. (Note that for the HKM direction, R� T shouldbe replaced by the linear map de�ning the Kronecker product R
 T in (15).) Thusthe (i; j) element of M in (14) can be written equivalently asMij = (R� T (Ai)) � (D1 � [(D2� I)(R� T (Aj))]): (16)Therefore the Schur complement matrix M can also be formed by �rst computingand storing R� T (Aj) for each j = 1; : : : ;m, and then taking inner products as in(16).Computing M via di�erent formulas, (14) or (16), will result in di�erent compu-tational complexities. Roughly speaking, if most of the matrices Ak are dense, then itis cheaper to use (16). However, if most of the matrices Ak are sparse, then using (14)will be cheaper because the sparsity of the matrices Ak can be exploited in (14) when5
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taking inner products. For the sake of completeness, in Table 1, we give an upperbound on the complexity of computing M for the above mentioned search directionswhen computed via (14) and (16). (Here we have assumed that all Ak's are dense; ifthey are block diagonal with dense blocks, each term n3 or n2 should be replaced bya sum of the cubes or squares of the block dimensions.)directions upper bound on complexityusing (16) upper bound on complexityusing (14)AHO 4mn3 +m2n2 613mn3 +m2n2HKM 2mn3 +m2n2 4mn3 + 0:5m2n2NT mn3 + 0:5m2n2 2mn3 + 0:5m2n2GT 2mn3 + 0:5m2n2 413mn3 + 0:5m2n2Table 1: Upper bounds on the complexities of computing M (for real SDPdata) for various search directions. We count one addition and one multiplica-tion each as one op. Note that all directions other than the HKM directionrequire an eigenvalue decomposition of a symmetric matrix in the computationof M .The reader is referred to [3], [26], and [27] for more computational details, such asthe actual formation of M and h, involved in computing the above search directions.The derivation of the upper bounds on the computational complexities ofM computedvia (14) and (16) is given in [27]. The issue of exploiting the sparsity of the matricesAk is discussed in full detail in [11] for the HKM and NT directions, whereas ananalogous discussion for the AHO and GT directions can be found in [27].Let NZ be the total number of nonzero elements of A1; � � � ; Am. In our implemen-tation, we consider the following two cases in exploiting possible sparsity in the SDPdata:if NZ exceeds a certain fraction of mn2,we decide on the formula to use for computing M based on the CPU timetaken during the third and fourth iteration to compute M via (16) and (14),respectively. We do not base our decision on the �rst two iterations for tworeasons. Firstly, if the initial iterates X0 and Z0 are diagonal matrices, thenthe CPU time taken to compute M during these two iterations would not bean accurate estimate of the time required for subsequent iterations. Secondly,there are overheads incurred when variables are �rst loaded into Matlabworkspace.else we use (14) throughout.We should mention that when (14) is used, we further exploit the sparsity of thematrices A1; � � � ; Am based on the ideas proposed in [12]. The reader is referred to6
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[12] for the details.2.3 The primal-dual path-following algorithmThe algorithmic framework of our primal-dual path-following algorithm is as follows.We note that most of our implementation choices here and in our other algorithmsare based on minimizing either the number of iterations or the CPU time of thelinear algebra involved in computing the Schur complement. In the computation ofthe eigenvalues necessary in our choice of step-size, we used an iterative solver, theLanczos iteration. If we assume that the Cholesky factors of X and Z are given,this method requires only O(n2) ops instead of O(n3) ops as required by Choleskyfactorization or the QR algorithm to compute the step-size. A detailed discussion oncomputing the step-size via the Lanczos iteration is given in [29].Algorithm IPF. Suppose we are given an initial iterate (X0; y0; Z0) with X0; Z0 positivede�nite. Decide on the symmetrization operator HP (�) to use. Set 0 = 0:9 and �0 = 0:5.For k = 0; 1; : : :(Let the current and the next iterate be (X; y; Z) and (X+; y+; Z+) respectively. Also, letthe current and the next step-length (centering) parameter be denoted by  and + (� and�+) respectively.)� Set � = X � Z=n and� = max � krpkmax(1; kbk) ; kRdkFmax(1; kCkF )� : (17)Stop the iteration if the infeasibility measure � and the duality gap X � Z are su�-ciently small.� Compute the search direction (�X;�y;�Z) from the equations (9), (12) and (13).� Update (X; y; Z) to (X+; y+; Z+) byX+ = X + ��X; y+ = y + ��y; Z+ = Z + ��Z; (18)where � = min�1; ��min(X�1�X)� ; � = min�1; ��min(Z�1�Z)� : (19)(Here �min(U) denotes the minimum eigenvalue of U ; if the minimum eigenvalue ineither expression is positive, we ignore the corresponding term.)� Update the step-length parameter by+ = 0:9 + 0:09min(�; �); (20)and the centering parameter by �+ = 1� 0:9min(�; �):
7
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Remarks.(a) Note that, if � < 1 in (19), then the step is  times that making X+ positivesemide�nite but not positive de�nite, and similarly for �. Hence the step is aconstant () multiple of the longest feasible step, or the full Newton-like step.The adaptive choice of the step-length parameter  in (20) is used as the defaultin our implementation, but the user has the option of �xing the value of . Themotivation for using adaptive step-length and centering parameters is as follows.If large step sizes for � and � have been taken, this indicates that good progresswas made in the previous iteration, so more aggressive values for the step-lengthparameter + and centering parameter �+ can be chosen for the next iterationso as to get as much reduction in the total complementarity X �Z (we often callthis the duality gap; it is equal if both iterates are feasible) and infeasibilitiesas possible. On the other hand, if either � or � is small, this indicates that(X+; y+; Z+) is close to the boundary of Hn+: in this case, we would want toconcentrate more on centering in the next iteration by using less aggressivevalues for + and �+.(b) If �X and �Z are orthogonal (which certainly holds if both iterates are feasible)and equal steps are taken in both primal and dual, then the reduction in theinfeasibilities is exactly by the factor (1��), and that in the total complemen-tarity is exactly by the factor (1��(1��)); thus we expect the infeasibilities todecrease faster than the total complementarity. We often observed this behaviorin practice and do not otherwise ensure that infeasibilities decrease faster thanthe total complementarity.(c) It is known that as the parameter � decreases to 0, the norm krpk will tend toincrease, even if the initial iterate is primal feasible, due to increasing numericalinstability of the Schur complement approach. In our implementation of thealgorithms, the user has the option of correcting for the loss in primal feasibilityby projecting �X onto the null space of the operatorA. That is, before updatingto X+, we replace �X by�X �A�D�1A (�X);where D = AA�. Note that this step is inexpensive. The m � m matrix Donly needs to be formed once at the beginning of the algorithm. Typically, thisoption might lose one order of magnitude in the duality gap achieved, but gainsometimes two or three orders of magnitude in the �nal primal feasibility.(d) We only described termination when approximately optimal solutions are athand. Nevertheless, our codes stop when any of the following indications arise:� The step-length taken in either primal or dual spaces becomes very small,in which case the message ``steps in predictor too short'' will bedisplayed.� If � and � are both less than 10�8, we terminate if the reduction in the totalcomplementarity is signi�cantly worse than that for the previous few itera-tions, in which case the message ``lack of progress in the predictorstep'' will be displayed. 8
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� We also stop if we get an indication of infeasibility, as follows. If the currentiterate has bT y much larger than kA�y + Zk, then a suitable scaling is anapproximate solution of bT y = 1; A�y+Z = 0; Z � 0, which is a certi�catethat the primal problem is infeasible. Similarly, if �C �X is much largerthan kAXk, we have an indication of dual infeasibility: a scaled iterate isthen an approximate solution of C �X = �1; AX = 0; X � 0, which is acerti�cate that the dual problem is infeasible. In either case, we return theappropriate scaled iterate suggesting primal or dual infeasibility.� Termination also occurs if either X or Z is numerically not positive de�nite,if the Schur complement matrix M becomes singular or too ill-conditionedfor satisfactory progress, or if the iteration limit is reached. Our otheralgorithms described in the following pages also terminate if one of thesesituations occurs.2.4 The Mehrotra-type predictor-corrector algorithmThe algorithmic framework of the Mehrotra-type predictor-corrector [19] variant ofthe previous algorithm is as follows.

9
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Algorithm IPC. Suppose we are given an initial iterate (X0; y0; Z0) with X0; Z0 positivede�nite. Decide on the type of symmetrization operator HP (�) to use. Set 0 = 0:9. Choosea value for the parameter expon used in the exponent e.For k = 0; 1; : : :(Let the current and the next iterate be (X; y; Z) and (X+; y+; Z+) respectively, and simi-larly for  and +.)� Set � = X � Z=n and � as in (17). Stop the iteration if the infeasibility measure �and the duality gap X � Z are su�ciently small.� (Predictor step)Solve the linear system (9), (12) and (13) with � = 0, i.e., with Rc = �HP (XZ).Denote the solution by (�X; �y; �Z). Let �p and �p be the step-lengths de�ned as in(19) with �X;�Z replaced by �X; �Z, respectively.� Take � to be � = min�1; � (X + �p �X) � (Z + �p �Z)X � Z �e� ; (21)where the exponent e is chosen as follows:e = 8>><>>: 1 if � > 10�6 and min(�p; �p) < 1=p3,max[expon; 3min(�p; �p)2] if � > 10�6 and min(�p; �p) � 1=p3,max[1;min[expon; 3min(�p; �p)2]] if � � 10�6. (22)� (Corrector step)Compute the search direction (�X;�y;�Z) from the same linear system (9), (12)and (13) but with Rc replaced byRq = ��I �HP (XZ)�HP (�X�Z):� Update (X; y; Z) to (X+; y+; Z+) as in (18), where � and � are computed as in (19)with  chosen to be  = 0:9 + 0:09min(�p; �p):� Update  to + as in (20).Remarks.(a) The default choices of expon for the AHO, HKM, NT, and GT directions areexpon = 3; 1; 1; 1, respectively. We observed experimentally that using expon =2 for the HKM and NT directions seems to be too aggressive, and usually resultsin slightly poorer numerical stability when � is small than the choice expon = 1.We should mention that the choice of the exponent e in Algorithm IPC aboveis only a rough guide. The user might want to explore other possibilities.(b) In our implementation, the user has the option to switch from Algorithm IPF10
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to Algorithm IPC once the infeasibility measure � is below a certain thresholdspeci�ed by the variable sw2PC tol. This option is for the convenience of theuser; such a strategy was recommended in an earlier version of [3].(c) Once again, we also terminate if the primal or dual step-length is too small, inwhich case the message ``steps in predictor too short'' or ``steps incorrector too short'' will be displayed, or we get an indication of primal ordual infeasibility. If � and � are both less than 10�8, we terminate if the reduc-tion in the total complementarity in the predictor step is signi�cantly worse thanthat for the previous few iterations. Similar termination also applies to the cor-rector step with displayed message ``lack of progress in the correctorstep'', unless the reduction in the total complementarity corresponding to thepredictor point (X + �p �X; y + �p�y; Z + �p �Z) is satisfactory. In the lattercase, the iterate (X+; y+; Z+) is taken to be this good predictor point and acorresponding message ``update to good predictor point'' is displayed.3 Homogeneous and self-dual algorithmsHomogeneous embedding of an SDP in a self-dual problem was �rst developed byPotra and Sheng [22], and subsequently extended independently by Luo et al. [17]and de Klerk et al. [15]. The implementation of such homogeneous and self-dualalgorithms for SDP �rst appeared in [9], where they are based on those appearingin [32] for linear programming (LP). Our algorithms are also the SDP extensions ofthose appearing in [32] for LP. However, we use a di�erent criterion for choosing equalversus unequal primal and dual step-lengths in the iteration process.3.1 The search directionLet Â be the operator Â : Hn �! IRm+1;ÂX = 0BBBB@ A1 �X...Am �X�C �X 1CCCCA :Then the adjoint of Â with respect to the standard inner products in Hn and IRm+1is the operator Â� : IRm+1 �! Hn;Â� y� ! = Pmk=1 ykAk � �C:
11



www.manaraa.com

Our homogeneous and self-dual linear feasibility model for SDP based on thatappearing in [32] for LP has the following form:Â� y� ! + Z = 0ÂX +  0 �bbT 0 ! y� ! �  0� ! = 0 (23)XZ = 0; �� = 0;whereX;Z; �; � are positive semide�nite. A solution to this system with �+� positiveeither gives optimal solutions to the SDP and its dual or gives a certi�cate of primalor dual infeasibility.At each iteration of our algorithms, we apply a variant of Newton's method to aperturbation of equation (23), namely,Â� y� ! + Z = 0ÂX +  0 �bbT 0 ! y� ! �  0� ! = 0 (24)XZ = ��I; �� = ��;where � is a parameter.Similarly to the case of infeasible path-following methods, the search direction(�X;�y;�Z;��;��) at each iteration of our homogeneous algorithms is computedfrom a symmetrized Newton equation derived from the perturbed equation (24), butnow with an extra perturbation added, controlled by the parameter �:Â� �y�� ! + �Z = � R̂dÂ�X +  0 �bbT �=� ! �y�� ! = � r̂p +  0rc=� !E�X + F�Z = Rc��� + ��� = rc (25)
where HP (XZ) and E , F are de�ned as in (6) and (7), respectively, andR̂d := �Â� y� ! � Z; (26)12
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r̂p :=  0� ! �  0 �bbT 0 ! y� ! � ÂX; (27)� := X � Z + ��n+ 1 ; (28)rc := ��� ��;Rc := ��I �HP (XZ):In fact, we choose the parameter � to be 1 � �. This ensures (with any of ourchoices of P ) that �X � �Z + ���� = 0, so that equal step sizes of � in bothprimal and dual will give new iterates with infeasibilities and total complementarityreduced by the same factor 1 � �(1 � �). This aids convergence. Also in this case,the search directions coincide with those derived from the semide�nite extension ofthe homogeneous self-dual programming approach of Ye, Todd, and Mizuno [33].We compute the search direction via a Schur complement equation as follows.First compute �y;�� from the equation"M̂ +  0 �bbT �=� !# �y�� ! = ĥ; (29)where M̂ = ÂE�1FÂ�; (30)ĥ = � r̂p +  0rc=� ! + � ÂE�1FR̂d � ÂE�1Rc: (31)Then compute �X, �Z, and �� from the equations�Z = � R̂d � Â� �y�� !�X = E�1Rc � E�1F�Z�� = (rc � ���)=�: (32)3.2 Primal and dual step-lengthsAs in the case of infeasible path-following algorithms, using di�erent step-lengthsin the primal and dual updates under appropriate conditions can enhance the per-formance of homogeneous algorithms. Our purpose now is to establish one suchcondition.Suppose we are given the search direction (�X;�y;�Z;��;��). Let�p = � + ���; �d = � + ���: (33)Suppose (X; y; Z; �; �) is updated to (X+; y+; Z+; �+; �+) by�+ = min(�p; �d); �+ = ( �+ ���; if �+ = �p�+ ���; if �+ = �d: (34)X+ = �+�p (X + ��X); y+ = �+�d (y + ��y); Z+ = �+�d (Z + ��Z):13
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Then it can be shown that the scaled primal and dual infeasibilities, de�ned respec-tively byr+p (�) = b�A(X+=�+); R+d (�) = C � Z+=�+ �A�(y+=�+); (35)satisfy the relationr+p (�) = 1� ��1 + ���=� rp; R+d (�) = 1� ��1 + ���=� Rd; (36)where rp = b�A(X=�); Rd = C � Z=� �A�(y=�): (37)Our condition is basically determined by considering reductions in the norms of thescaled infeasibilities. To determine this condition, let us note that the function f(t) :=(1 � t�)=(1 + t��=�), t 2 [0; 1], is decreasing if �� � ��� and increasing otherwise.Using this fact, we see that the norms of the scaled infeasibilities r+p (�); R+d (�) aredecreasing functions of the step-lengths if �� � ��� and they are increasing functionsof the step-lengths otherwise.Let �̂ and �̂ be  times the maximum possible primal and dual step-lengths thatcan be taken for the primal and dual updates, respectively (where 0 <  < 1). To keepthe possible ampli�cations in the norms of the scaled infeasibilities to a minimum, weset � and � to be min(�̂; �̂) when �� < ��� ; otherwise, it is bene�cial to take themaximum possible primal and dual step-lengths so as to get the maximum possiblereductions in the scaled infeasibilities. For the latter case, we take di�erent step-lengths, � = �̂ and � = �̂, provided that the resulting scaled total complementarityis also reduced, that is, ifX+ � Z+ + �+�+(�+)2 � X � Z + ���2 ; (38)when we substitute � = �̂ and � = �̂ into (33) and (34).To summarize, we take di�erent step-lengths, � = �̂ and � = �̂, for the primaland dual updates only when �� � ��� and (38) holds; otherwise, we take the samestep-length min(�̂; �̂) for � and �.3.3 The homogeneous path-following algorithmOur homogeneous self-dual path-following algorithms and their Mehrotra-type predictor-corrector variants are modeled after those proposed in [32] for LP and the infeasiblepath-following algorithms discussed in Section 2.The algorithmic framework of these homogeneous path-following algorithm is asfollows.
14
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Algorithm HPF. Suppose we are given an initial iterate (X0; y0; Z0; �0; �0) withX0; Z0; �0; �0 positive de�nite. Decide on the symmetrization operator HP (�) to use. Set0 = 0:9, �0 = 0:1, and �0 = 0:9.For k = 0; 1; : : :(Let the current and the next iterate be (X; y; Z; �; �) and (X+; y+; S+; �+; �+) respectively.Also, let the current and the next step-length (centering) parameter be denoted by  and+ (� and �+) respectively.)� Set � = (X � Z + ��)=(n+ 1) and� = max � k�b�AXk� max(1; kbk) ; k�C � Z �A�ykF� max(1; kCkF ) � : (39)Stop the iteration if either of the following occurs:(a) The infeasibility measure � and the duality gap X �Z=�2 are su�ciently small.In this case, (X=�; y=�; Z=�) is an approximately optimal solution of the givenSDP and its dual.(b) max� ��0 ; �=��0=�0� is su�ciently small.In this case, either the primal or the dual problem (or both) is suspected to beinfeasible.� Compute the search direction (�X;�y;�Z;��;��) from the equations (29){(32)using � = 1� �.� Let �̂ = min�1; ��min(X�1�X) ; ���1�� ; ���1��� ; (40)�̂ = min�1; ��min(Z�1�Z) ; ���1�� ; ���1��� :(If any of the denominators in either expression is positive, we ignore the correspond-ing term.)If �� � ��� and (38) holds, set � = �̂ and � = �̂; otherwise, set � = � = min(�̂; �̂).
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� Let �p = � + ���; �d = � + ���:Update (X; y; Z; �; �) to (X+; y+; Z+; �+; �+) by�+ = min(�p; �d); �+ = ( �+ ���; if �+ = �p�+ ���; if �+ = �d; (41)X+ = �+�p (X + ��X); y+ = �+�d (y + ��y); Z+ = �+�d (Z + ��Z):� Update the step-length parameter by+ = 0:9 + 0:09min(�; �); (42)and let �+ = 1� 0:9min(�; �):3.4 The homogeneous predictor-corrector algorithmThe Mehrotra-type predictor-corrector variant of the homogeneous path-followingalgorithm is as follows.Algorithm HPC. Suppose we are given an initial iterate (X0; y0; Z0; �0; �0) withX0; Z0; �0; �0 positive de�nite. Decide on the type of symmetrization operator HP (�) touse. Set 0 = 0:9. Choose a value for the parameter expon used in the exponent e.For k = 0; 1; : : :(Let the current and the next iterate be (X; y; Z; �; �) and (X+; y+; Z+; �+; �+) respec-tively. Also, let the current and the next step-length parameter be denoted by  and +respectively.)� Set � = (X � Z + ��)=(n + 1) and � as in (39). Stop the iteration if either of thefollowing occurs:(a) The infeasibility measure � and the duality gap X �Z=�2 are su�ciently small.(b) max� ��0 ; �=��0=�0� is su�ciently small.� (Predictor step)Solve the linear system (29){(32), with � = 0 and � = 1, i.e., with Rc = �HP (XZ).Denote the solution by (�X; �y; �Z; ��; ��). Let �p and �p be de�ned as in (40) with�X;�Z;��;�� replaced by �X; �Z; ��; ��, respectively.
16
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� Take � to be� = min�1; � (X + �p �X) � (Z + �p �Z) + (� + �p ��)(� + �p ��)X � Z + �� �e� ;where the exponent e is chosen as in (22). Set � = 1� �.� (Corrector step)Compute the search direction (�X;�y;�Z;��;��) from the same linear system(29){(32) but with Rc, rc replaced, respectively, byRq = ��I �HP (XZ)�HP (�X�Z)rq = ��� ��� �� ��:� Update (X; y; Z; �; �) to (X+; y+; Z+; �+; �+) as in (41), where � and � are computedas in (40) with  chosen to be = 0:9 + 0:09min(�p; �p):� Update  to + as in (42).Remarks for Algorithms HPF and HPC.(a) The numerical instability of the Schur complement equation (29) arising fromthe homogeneous algorithms appears to be much more severe than that of theinfeasible path-following algorithms as � decreases to zero. We overcome thisdi�culty by �rst setting �� = 0 and then computing �y in (29) when � issmaller than 10�8. This amounts to switching to the infeasible path-followingalgorithms where the Schur complement equation (9) is numerically more stable.(b) For the homogeneous algorithms, it seems not desirable to correct for the primalinfeasibility so as keep it below a certain small level once that level has beenreached via the projection step mentioned in Remark (c) of Section 2.3. Thee�ect of such a correction can be quite erratic, in contrast to the case of theinfeasible path-following algorithms described in Section 2.(c) Once again, there are other termination criteria: lack of positive de�niteness,lack of progress, or short step-lengths. We also test possible infeasibility in thesame way we did for our infeasible-interior-point algorithms, because it givesexplicit infeasibility certi�cates, and possibly gives an earlier indication thanthe speci�c termination criterion (item (b) in the algorithm descriptions above)to detect infeasibility.(Remarks (a) and (b) are based on computational experience rather than our havingany explanation at this time.)
17
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4 Initial iteratesOur algorithms can start with an infeasible starting point. However, the performanceof these algorithms is quite sensitive to the choice of the initial iterate. As observedin [12], it is desirable to choose an initial iterate that at least has the same order ofmagnitude as an optimal solution of the SDP. Suppose the matrices Ak and C areblock diagonal with the same structure, each consisting of L diagonal blocks of squarematrices of dimensions n1; n2; : : : ; nL. Let A(i)k and C(i) denote the ith block of Akand C, respectively. If a feasible starting point is not known, we recommend that thefollowing initial iterate be used:X0 = Diag(�i Ini); y0 = 0; Z0 = Diag(�i Ini); (43)where i = 1; : : : ; L, Ini is the identity matrix of order ni, and�i = ni max1�k�m 1 + jbkj1 + kA(i)k kF ; �i = 1 +max[maxkfkA(i)k kF g; kC(i)kF ]pni :If we multiply the identity matrix Ini by the factors �i and �i for each i, the initialiterate has a better chance of having the same order of magnitude as an optimalsolution of the SDP.The initial iterate above is set by calling infeaspt.m, with initial linefunction [X0,y0,Z0] = infeaspt(blk,A,C,b,options,scalefac),where options = 1 (default) corresponds to the initial iterate just described, andoptions = 2 corresponds to the choice where X0, Z0 are scalefac times identitymatrices and y0 is a zero vector.5 The main routineThe main routine that corresponds to the infeasible path-following algorithms de-scribed in Section 2 is sdp.m:[obj,X,y,Z,gaphist,infeashist,info,Xiter,yiter,Ziter] =sdp(blk,A,C,b,X0,y0,Z0,OPTIONS),whereas the corresponding routine for the homogeneous self-dual algorithms describedin Section 3 is sdphlf.m:[obj,X,y,Z,gaphist,infeashist,info,Xiter,yiter,Ziter,tau,kap] = sdphlf(blk,A,C,b,X0,y0,Z0,tau0,kap0,OPTIONS).Functions used.sdp.m calls the following function �les during its execution:18
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AHOpred.m HKMpred.m NTpred.m GTpred.mAHOcorr.m HKMcorr.m NTcorr.m GTcorr.mops.m blktrace.m blkchol.m blkeig.mAsum.m Prod2.m Prod3.m nonzerolist.msteplength.m validate.m scaling.m preprocess.m.aasen.m Atriu.m corrprim.msdphlf.m calls the same set of function �les except that the �rst two rows in the listabove are replaced byAHOpredhlf.m HKMpredhlf.m NTpredhlf.m GTpredhlf.mAHOcorrhlf.m HKMcorrhlf.m NTcorrhlf.m GTcorrhlf.m.In addition, sdphlf.m calls the function �le schurhlf.m.Input arguments.blk: a cell array describing the block structure of the Ak's and C (see below).A : a cell array with m columns such that the kth column corresponds tothe matrix Ak.C, b: given data of the SDP.X0, y0, Z0: an initial iterate.tau0, kap0: initial values for � and � (sdphlf.m only).OPTIONS: a structure array of parameters | see below.If the input argument OPTIONS is omitted, default values are used. For sdphlf.m, ifalso input arguments tau0 and kap0 are omitted, default values of 1 are used.Output arguments.obj = [C � X bTy ].X,y,Z: an approximately optimal solution (with normal termination; it could alternativelygive an approximate certi�cate of infeasibility { see below).gaphist: a row vector that records the total complementarity X � Z at each iteration.infeashist: a row vector that records the infeasibility measure � at each iteration.info: a 1� 5 vector that contains performance information:info(1) = termination code,info(2) = number of iterations taken,info(3) = �nal duality gap,info(4) = �nal infeasibility measure, andinfo(5) = total CPU time taken.
19
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info(1) takes on ten possible integral values depending on the terminationconditions:info(1) = 0 for normal termination;info(1) = -1 for lack of progress in either the predictor or corrector step;info(1) = -2 if primal or dual step-lengths are too short;info(1) = -3 if the primal or dual iterates lose positive de�niteness;info(1) = -4 if the Schur complement matrix becomes singular;info(1) = -5 if the Schur complement matrix becomes too ill-conditionedfor further progress;info(1) = -6 if the iteration limit is reached;info(1) = -10 for incorrect input;info(1) = 1 if there is an indication of primal infeasibility; andinfo(1) = 2 if there is an indication of dual infeasibility.If info(1) is positive, the output variables X,y,Z have a di�erent meaning: ifinfo(1) = 1 then y,Z gives an indication of primal infeasibility: bTy = 1 andA�y + Z is small, while if info(1) = 2 then X gives an indication of dual infea-sibility: C�X = -1 and AX is small.Xiter,yiter,Ziter: the last iterate of sdp.m or sdphlf.m. If desired, the user cancontinue the iteration process with this as the initial iterate.tau,kap: the last values of � and �, for sdphlf.m only.Note that the user can omit the last few output arguments if they are of no interestto him/her.A structure array for parameters.sdp.m and sdphlf.m use a number of parameters which are speci�ed in a Matlabstructure array called OPTIONS in the M-�le parameters.m. If desired, the user canchange the values of these parameters. The meaning of the speci�ed �elds in OPTIONSare as follows.vers: type of search direction to be used, wherevers = 1 corresponds to the AHO direction,vers = 2 corresponds to the HKM direction,vers = 3 corresponds to the NT direction, andvers = 4 corresponds to the GT direction.The default is vers = 2.gam: step-length parameter. To use the default, set gam = 0; otherwise,set gam to the desired �xed value, say gam = 0.98.predcorr: a 0{1 ag indicating whether to use the Mehrotra-typepredictor-corrector. The default is 1.expon: a 1� 4 vector specifying the lower bound for the exponent to be used inupdating the centering parameter � in the predictor-corrector algorithm,where 20



www.manaraa.com

expon(1): for the AHO direction,expon(2): for the HKM direction,expon(3): for the NT direction, andexpon(4): for the GT direction.The default is expon = [3 1 1 1].steptol: the step-length threshold below which the iteration is terminated.The default is 1e-6.gaptol: the required relative accuracy in the duality gap, i.e., X � Z=[1 + max(C �X; bT y)].The default is 1e-8.inftol: the tolerance for kATy+ Zk (with bTy = 1) or kAXk (with C � X = �1)in order to terminate with an indication of infeasibility. Also used as thetolerance in termination criterion (b) in the homogeneous algorithms.The default is 1e-8.maxit: maximum number of iterations allowed. The default is 50.sw2PC tol: the infeasibility measure threshold below which the predictor-correctorstep is applied. The default is sw2PC tol = Inf.use corrprim: a 0{1 ag indicating whether to correct for primal infeasibility.The default is 0.printyes: a 0{1 ag indicating whether to display the result of each iteration.The default is 1.scale data: a 0{1 ag indicating whether to scale the SDP data.The default is 0.schurfun: a string containing the initial line of user supplied function �le forcomputing the Schur complement matrix.The default is [ ].schurfun parms: a cell array containing the external parameters needed in usersupplied Schur routine described in schurfun.The default is [ ].randnstate: the initial seed used for the random vector used to initiate theArnoldi iteration.The default is 0.C Mex �les used.The computation of the Schur complement matrix M requires repeated computationof matrix products involving either matrices that are triangular or products that areknown a priori to be Hermitian. We compute these matrix products in a C Mexroutine generated from a C program mexProd2.c written to take advantage of thestructures of the matrix products. A C Mex routine generated from the C programmexProd3nz.c computes certain elements of the products of three sparse matrices,while another, generated from the C program mexschur.c, computes the Schur com-plement e�ciently. Likewise, computation of the inner product between two matrices21
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is done in a C Mex routine generated from the C program mextrace.c written to takeadvantage of possible sparsity in either matrix. Another C Mex routine, generatedfrom the C program mexAsum.c, computes the result of applying the adjoint of A toa vector. Finally, a C Mex routine that is used in our package is generated from theC program mexaasen.c written to compute the Aasen decomposition of a Hermitianmatrix [1]. To summarize, here are the C programs used in our package:mextrace.c mexProd2.c mexProd3nz.c mexAsum.cmexschur.c mexaasen.cIn addition to the source codes of these routines, corresponding binary �les for a num-ber of platforms (including Solaris, Linux, Alpha, SGI, and Windows) are availablefrom the internet sites mentioned in the introduction.Cell array representation for problem data.Our implementation SDPT3 exploits the block-diagonal structure of the given data,Ak and C. Suppose the matrices Ak and C are block-diagonal of the same structure.If the initial iterate (X0; Z0) is chosen to have the same block-diagonal structure,then this structure is preserved for all the subsequent iterates (X;Z). For reasonsthat will be explained later, if there are numerous small blocks each of dimension lessthan say 10, it is advisable to group them together as a single sparse block-diagonalmatrix instead of considering them as individual blocks. Suppose now that each ofthe matrices Ak and C consists of L diagonal blocks of square matrices of dimensionsn1; n2; : : : ; nL. We can classify each of these blocks into one of the following threetypes:1. a dense or sparse matrix of dimension greater than or equal to 10;2. a sparse block-diagonal matrix consisting of numerous sub-blocks each of di-mension less than 10; or3. a diagonal matrix.For each SDP problem, the block-diagonal structure of Ak and C is described byan L � 2 cell array named blk where the content of each of its elements is given asfollows. If the ith block of each Ak and C is a dense or sparse matrix of dimensiongreater than or equal to 10, thenblkfi,1g = 'nondiag' blkfi,2g = niAfi,kg, Cfig = [nix ni double] or [nix ni sparse].(It is possible for some Ak's to have a dense ith block and some to have a sparse ithblock, and similarly the ith block of C can be either dense or sparse.) If the ith blockof each Ak and C is a sparse matrix consisting of numerous small sub-blocks, say tof them, of dimensions n(1)i ; n(2)i ; : : : ; n(t)i such that Ptl=1 n(l)i = ni, thenblkfi,1g = 'nondiag' blkfi,2g = [n(1)i n(2)i � � � n(t)i ]Afi,kg, Cfig = [nix ni sparse]. 22
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50x50

500x500

100x100

5x5

Figure 1: An example of a block-diagonal matrix.If the ith block of each Ak and C is a diagonal matrix, thenblkfi,1g = 'diag' blkfi,2g = niAfi,kg, Cfig = [nix1 double].As an example, suppose each of the Ak's and C has block structure as shown inFigure 1; then we haveblkf1,1g = 'nondiag' blkf1,2g = 50blkf2,1g = 'nondiag' blkf2,2g = [5 5 � � � 5]blkf3,1g = 'diag' blkf3,2g = 100and the matrices Ak and C are stored in cell arrays asAf1,kg, Cf1g = [50x50 double]Af2,kg, Cf2g = [500x500 sparse]Af3,kg, Cf3g = [100x1 double].Notice that when the block is a diagonal matrix, only the diagonal elements arestored, and they are stored as a column vector.Recall that when a block is a sparse block-diagonal matrix consisting of t sub-blocks of dimensions n(1)i ; n(2)i ; : : : ; n(t)i , we can actually view it as t individual blocks,in which case there will be t cell array elements associated with the t blocks ratherthan just one single cell array element originally associated with the sparse block-diagonal matrix. The reason for using the sparse matrix representation to handlethe case when we have numerous small diagonal blocks is that it is less e�cient forMatlab to work with a large number of cell array elements compared to workingwith a single cell array element consisting of a large sparse block-diagonal matrix.23
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Technically, no problem will arise if one chooses to store the small blocks individuallyinstead of grouping them together as a sparse block-diagonal matrix.We should also mention the function �le ops.m used in our package. The purposeof this �le is to facilitate arithmetic operations on the contents of any two cell arrayswith constituents that are matrices of corresponding dimensions.For the usage of Matlab cell arrays, we refer to [18].Complex data.Complex SDP data are allowed in our package. The user does not have to makeany declaration even when the data is complex. Our codes will automatically detectwhether this is the case.Caveats.The user should be aware that semide�nite programming is more complicated thanlinear programming. For example, it is possible that both primal and dual problemsare feasible, but their optimal values are not equal. Also, either problem may beinfeasible without there being a certi�cate of that fact (so-called weak infeasibility).In such cases, our software package is likely to terminate after some iterations with anindication of short step-length or lack of progress. Also, even if there is a certi�cate ofinfeasibility, our infeasible-interior-point methods may not �nd it. Our homogeneousself-dual methods may also fail to detect infeasibility, but they are practical variantsof theoretical methods that are guaranteed to obtain certi�cates of infeasibility ifsuch exist. In our very limited testing on strongly infeasible problems, most of ouralgorithms have been quite successful in detecting infeasibility.6 Example �lesTo solve a given SDP, the user needs to express it in the standard form (1) and(2), and then write a function �le, say problem.m, to compute the input datablk,A,C,b,X0,y0,Z0 for the solvers sdp.m or sdphlf.m. This function �le maytake the form[blk,A,C,b,X0,y0,Z0] = problem(input arguments).Alternatively, one can provide the data in the input format described in [6], which isbased on that of [12], and execute the function (based on a routine written by BrianBorchers)[blk,A,C,b,X0,y0,Z0] = read_sdpa('filename').The user can easily learn how to use this software package by reading the script�le demo.m, which illustrates how the solvers sdp.m and sdphlf.m can be used tosolve a few SDP examples. The next section shows how sdp.m and sdphlf.m canbe used to solve random problems generated by randsdp.m, graph.m, and maxcut.m,and the resulting output, for several of our algorithms.24
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This software package also includes example �les for the following classes of SDPs.In these �les, unless otherwise stated, the input variables feas and solve are usedas follows:feas =( 0 corresponds to the initial iterate given in (43);1 corresponds to a feasible initial iterate;solve =8><>: 0 only gives the input data blk,A,C,b,X0,y0,Z0 for sdp.m or sdphlf.m,1 solves the given problem by an infeasible path-following algorithm,2 solves the given problem by a homogeneous self-dual algorithm.If solve is positive, the output variable objval is the objective value of the associ-ated optimization problem, and the output variables after objval give approximatelyoptimal solutions to the original problem and its dual (or possibly indications of in-feasibility).Here are our examples.(1) Random SDP: The associated M-�le is randsdp.m, with initial line[blk,A,C,b,X0,y0,Z0,objval,X,y,Z] = randsdp(de,sp,di,m,feas,solve),where the input parameters describe a particular block diagonal structure for each Akand C. Speci�cally, the vector de is a list of dimensions of dense blocks; the vector spis a list of dimensions of (small) subblocks in a single sparse block; and the scalar diis the size of the diagonal block. The scalar m is the number of equality constraints.There is an alternative function randinfsdp.m that generates primal or dual in-feasible problems. The associated M-�le has the initial line[blk,A,C,b,X0,y0,Z0,objval,X,y,Z] = randinfsdp(de,sp,di,m,infeas,solve).The input variables de, sp, di, and solve all have the same meaning as in randsdp.m,but the variable infeas is used as follows:infeas =( 1 if want primal infeasible pair of problems;2 if want dual infeasible pair of problems:(2) Norm minimization problem [30]:minx2IRm kB0 + mXk=1 xkBkk;where the Bk, k = 0; : : : ;m, are p � q matrices (possibly complex, in which casex ranges over Cm) and the norm is the matrix 2-norm. The associated M-�le isnorm min.m, with initial line[blk,A,C,b,X0,y0,Z0,objval,x] = norm min(B,feas,solve),25
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where B is a cell array with Bfk+ 1g = Bk, k = 0,...,m.(3) Chebyshev approximation problem for a matrix [28]:minp kp(B)k;where the minimization is over the class of monic polynomials of degree m, B is asquare matrix (possibly complex) and the norm is the matrix 2-norm. The associatedM-�le is chebymat.m, with initial line[blk,A,C,b,X0,y0,Z0,objval,p] = chebymat(B,m,feas,solve).See also igmres.m, which solves an analogous problem with p normalized such thatp(0) = 1.(4) Max-Cut problem [14]:minX L �Xs:t: diag(X) = e=4; X � 0;where L = B �Diag(Be), e is the vector of all ones and B is the weighted adjacencymatrix of a graph [14]. The associated M-�le is maxcut.m, with initial line[blk,A,C,b,X0,y0,Z0,objval,X] = maxcut(B,feas,solve).See also graph.m, from which the user can generate a weighted adjacency matrix Bof a random graph.(5) ETP (Educational testing problem) [30]:maxd2IRN eT ds:t: B �Diag(d) � 0; d � 0;where B is a real N �N positive de�nite matrix and e is again the vector of all ones.The associated M-�le is etp.m, with initial line[blk,A,C,b,X0,y0,Z0,objval,d] = etp(B,feas,solve).(6) Lov�asz � function for a graph [2]:minX C �Xs:t: A1 �X = 1;Ak �X = 0; k = 2; : : : ;m;X � 0;where C is the matrix of all minus ones, A1 = I, and Ak = eieTj + ejeTi , where the(k�1)st edge of the given graph (with m�1 edges) is from vertex i to vertex j. Hereei denotes the ith unit vector. The associated M-�le is theta.m, with initial line26
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[blk,A,C,b,X0,y0,Z0,objval,X] = theta(B,feas,solve),where B is the adjacency matrix of the graph.(7) Logarithmic Chebyshev approximation problem [30]:minx2IRm max1�k�N j log(bTk x)� log(fk)j;where B = [b1 b2 � � � bN ]T is a real N �m matrix and f is a real N -vector. Theassociated M-�le is logcheby.m, with initial line[blk,A,C,b,X0,y0,Z0,objval,x] = logcheby(B,f,feas,solve).(8) Chebyshev approximation problem in the complex plane [28]:minp max1�k�N jp(dk)j;where the minimization is over the class of monic polynomials of degree m andfd1; : : : ; dNg is a given set of points in the complex plane. The associated M-�leis chebyinf.m, with initial line[blk,A,C,b,X0,y0,Z0,objval,p] = chebyinf(d,m,feas,solve),where d = [d1 d2 : : : dN].See also cheby0.m, which solves an analogous problem with p normalized such thatp(0) = 1.(9) Control and system problem [30]:maxt;P ts:t: �BTk P � PBk � 0; k = 1; : : : ; LP � tI; I � P; P = P T ;where Bk, k = 1; : : : ; L, are square real matrices of the same dimension. The associ-ated M-�le is control.m, with initial line[blk,A,C,b,X0,y0,Z0,objval,P] = control(B,solve),where B is a cell array with Bfkg = Bk, k = 1,...,L.
27
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7 Sample RunsAssuming that the current directory is SDPT3-2.1, we will now generate some sampleruns to illustrate how our package might be used.>> randn('seed',0) % reset random generator to its initial seed.>> rand('seed',0) %>> startup % set up default parameters in the OPTIONS structure,>> % set paths>>>> %% random SDP %%>>>> de=[20]; sp=[]; di=[]; % one 20X20 dense block, no sparse/diag blocks>> m=20; % 20 equality constraints>> feas=1; % feasible initial iterate>> solve=0; % do not solve the problem, just generate data.>> [blk,A,C,b,X0,y0,Z0] = randsdp(de,sp,di,m,feas,solve);>>>> OPTIONS.gaptol=1e-12; % use a non-default relative accuracy tolerance>> OPTIONS.vers=1; % use the AHO direction>> % solve using IPC>> [obj,X,y,Z] = sdp(blk,A,C,b,X0,y0,Z0,OPTIONS);*******************************************************************Infeasible path-following algorithms*******************************************************************version predcorr gam expon use_corrprim sw2PC_tol scale_data1 1 0.000 3 0 Inf 0it pstep dstep p_infeas d_infeas gap obj sigma-------------------------------------------------------------------0 0.000 0.000 1.8e-16 8.9e-17 8.2e+03 2.545530e+031 0.002 0.029 5.8e-16 8.7e-17 8.2e+03 2.569574e+03 0.998. . . . . . . .. . . . . . . .12 0.988 0.988 1.3e-13 1.5e-16 1.5e-09 -1.058223e+03 0.00013 0.967 0.974 8.8e-14 1.4e-16 8.7e-11 -1.058223e+03 0.028Stop: max(relative gap, infeasibilities) < 1.00e-12----------------------------------------------------number of iterations = 13gap = 8.73e-11relative gap = 8.25e-14infeasibilities = 8.76e-14Total CPU time = 4.9CPU time per iteration = 0.4termination code = 0----------------------------------------------------Percentage of CPU time spent in various parts----------------------------------------------------chol pred steplen corr steplen misc28
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0.7 71.9 4.5 13.7 5.5 3.8----------------------------------------------------An explanation for the notations used in the iteration output above is in order:it: the iteration number.pstep, dstep: denote the step-lengths � and �, respectively.p infeas, d infeas: denote the relative primal infeasibility krpk=max(1; kbk) anddual infeasibility kRdkF =max(1; kCkF ), respectively.gap: the duality gap X � Z.obj: the mean objective value (C �X + bT y)=2.sigma: the value used for the centering parameter �.To give the reader an idea of the amount of CPU time spent in various steps of our algorithms,we give the breakdowns of the CPU time spent in algorithm IPC, and this is reported in thelast line of the summary table above.>> randn('seed',0); rand('seed',0);>> % next, generate new data with a different block structure>> feas=0; % and use the (infeasible) initial iterate given in (42)>> [blk,A,C,b,X0,y0,Z0] = randsdp([20 15],[4 3 3],5,30,feas,solve);>>>> OPTIONS.vers=4; % use the GT direction>> % solve using HPC>> [obj,X,y,Z,tau,kap] = sdphlf(blk,A,C,b,X0,y0,Z0,1,1,OPTIONS);*******************************************************************Homogeneous self-dual algorithms*******************************************************************version predcorr gam expon use_corrprim sw2PC_tol scale_data4 1 0.000 1 0 Inf 0it pstep dstep p_infeas d_infeas gap obj sigma-------------------------------------------------------------------0 0.000 0.000 1.8e+01 9.1e-01 5.4e+05 1.539414e+051 0.865 1.000 7.6e+00 3.1e-01 1.9e+05 6.344746e+04 0.3762 1.000 1.000 2.3e+00 9.5e-02 5.6e+04 1.925616e+04 0.321. . . . . . . .. . . . . . . .14 1.000 1.000 2.0e-11 4.2e-15 3.0e-09 3.067248e+02 0.01915 0.998 1.000 9.1e-12 1.8e-16 4.6e-11 3.067248e+02 0.014Stop: relative gap < 0.2*infeasibility------------------------------------number of iterations = 15gap = 4.61e-11relative gap = 1.50e-13infeasibilities = 9.08e-12Total CPU time = 20.6CPU time per iteration = 1.4 29
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termination code = 0----------------------------------------------------Percentage of CPU time spent in various parts----------------------------------------------------chol pred steplen corr steplen misc0.5 74.2 4.1 14.4 4.1 2.7---------------------------------------------------->> %%%%% MAXCUT PROBLEM %%%%%>>>> randn('seed',0); rand('seed',0);>> B = graph(50,0.3); % generate an adjacency matrix of a 50 node graph>> % where each edge is present with probability 0.3>> feas=1; % use a feasible initial iterate;>> solve=1; % generate data, then solve the problem using IPC>> % with default parameters set up for the OPTIONS structure>> % in parameters.m but with the NT direction>> % next solve the maxcut problem defined on the given graph>>>> [blk,A,C,b,X0,y0,Z0,objval,X] = maxcut(B,feas,solve);*******************************************************************Infeasible path-following algorithms*******************************************************************version predcorr gam expon use_corrprim sw2PC_tol scale_data2 1 0.000 1 0 Inf 0it pstep dstep p_infeas d_infeas gap obj sigma-------------------------------------------------------------------0 0.000 0.000 0.0e+00 0.0e+00 2.2e+02 -2.952000e+021 1.000 1.000 1.1e-15 5.2e-17 7.1e+01 -2.383341e+02 0.3212 0.699 1.000 3.9e-16 7.3e-17 4.6e+01 -2.542980e+02 0.475. . . . . . . .. . . . . . . .9 1.000 1.000 1.9e-13 5.4e-17 3.8e-06 -2.527228e+02 0.09710 1.000 1.000 2.8e-13 9.3e-17 1.8e-07 -2.527228e+02 0.048Stop: max(relative gap, infeasibilities) < 1.00e-08----------------------------------------------------number of iterations = 10gap = 1.82e-07relative gap = 7.21e-10infeasibilities = 2.78e-13Total CPU time = 2.0CPU time per iteration = 0.2termination code = 0----------------------------------------------------Percentage of CPU time spent in various parts----------------------------------------------------chol pred steplen corr steplen misc2.5 34.2 16.7 21.7 17.5 7.530
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----------------------------------------------------8 Specialized routines for computing the Schurcomplement matrixFor SDP problems where the matrices A1; � � � ; Am are all low rank matrices exceptpossibly a few of them, we can speed up the computation of the Schur complementmatrix M by exploiting this low rank structure. As an example, we will discusshow this is done for the case of symmetric rank one matrices in computing the NTdirection. Suppose Ai = aiaTi ; i = 1; � � � ;m:Given that Mij = Ai �WAjW for the case of the NT direction, where W is the NTscaling matrix, we have Mij = Tr�aiaTi WajaTj W�= Tr�(aTi Waj)(aTj Wai)�= (aTi Waj)2:Thus computing M for the NT direction in this case requires at most 2mn2 +m2nops, to leading orders. Similar simpli�cations can be done for the HKM direction.For the GT direction, exploiting low rank structures in the SDP data is stillpossible but is more involved compared to the HKM and NT directions. The reasonfor such a di�erence is that the matrices D1;D2 in (16) are respectively the matrixof ones and the identity matrix for the case of the HKM and NT directions, whereasD1 is a dense matrix and D2 = I in the case of the GT direction. More precisely,for the case where all the matrices A1; � � � ; Am are all symmetric rank one matrices,we have for the GT direction,Mij = (~ai � ~aj)T D1 (~ai � ~aj)= Tr�h(~ai~aTi ) �D1i (~aj~aTj )� ;where ~ai = Rai, i = 1; � � � ;m, for some matrix R.For the AHO direction, whereD1 andD2 are both dense matrices, exploiting lowrank structures in the data becomes even more complicated. We shall not elaboratefurther on this issue but leave it for future work.In our package, we include the following specialized routines for computing theSchur complement matrix for the HKM and NT directions for a few classes of the SD-PLIB problems [6], namely, the mcp, gpp, eqG, and theta problems. The specializedfunction �les are as follows:mcpHKMsch.m gppHKMsch.m eqGHKMsch.m thetaHKMsch.mmcpNTsch.m gppNTsch.m eqGNTsch.m thetaNTsch.m.31
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These function �les have a form similar to thetaHKMsch.m, whose initial line is[schur,hRd] = thetaHKMsch(X,Zinv,Rd,schurfun parms).The specialized routine can be used to replace the computation of the Schur comple-ment matrix inside the main solver sdp.m or sdphlf.m by passing the name of thespecialized function �le into the main solver through the structure array OPTIONS,speci�cally, by setting OPTIONS.schurfun to be the string containing the initial lineof the function �le, for example,OPTIONS.schurfun = 'thetaHKMsch(X,Zinv,Rd,schurfun_parms)'.The input argument schurfun parms can be omitted if there are no extra inputparameter variables needed besides X and Zinv. However, if in addition to X and Zinv,extra parameter variables are needed in the specialized routine, then these parametervariables can be passed into the specialized routine while executing inside sdp.m orsdphlf.m through the structure array OPTIONS by assigningOPTIONS.schurfun parmsto be a cell array containing all the required extra parameter variables.Assuming that the current directory is SDPT3-2.1 and its subdirectory Specialschurcontains the specialized routines, we will now illustrate how the specialized routinescan be used in sdp.m.>> randn('seed',0); rand('seed',0);>> startup; % add appropriate path to MATLAB path.>> [blk,A,C,b] = read_sdpa('./sdplib/theta3.dat-s'); % read in SDP data from% subdirectory sdplib.>> [X0,y0,Z0] = infeaspt(blk,A,C,b); % get starting point.>> OPTIONS.vers = 2;>> OPTIONS.schurfun = 'thetaHKMsch(X,Zinv,Rd,schurfun_parms)';>> OPTIONS.schurfun_parms = listA; % assume that the extra parameter variable% listA is already computed.% It can be computed via:% spdensity = 1;% [dummy,listA,permA] = nonzerolist(blk,A,spdensity);% listA(permA) = listA;>> [obj,X,y,Z] = sdp(blk,A,C,b,X0,y0,Z0,OPTIONS);*******************************************************************Infeasible path-following algorithmsuser supplied Schur routine: thetaHKMsch(X,Zinv,Rd,schurfun_parms)*******************************************************************version predcorr gam expon use_corrprim sw2PC_tol scale_data2 1 0.000 1 0 Inf 032
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it pstep dstep p_infeas d_infeas gap obj sigma-------------------------------------------------------------------0 0.000 0.000 1.3e+04 1.5e+00 1.6e+05 -6.590097e+031 0.130 0.200 1.1e+04 1.2e+00 1.4e+05 -9.645481e+04 0.417. . . . . . . .. . . . . . . .13 1.000 1.000 4.8e-12 7.5e-17 1.6e-06 -4.216698e+01 0.10014 1.000 1.000 8.5e-12 7.6e-17 2.4e-08 -4.216698e+01 0.015Stop: max(relative gap, infeasibilities) < 1.00e-08----------------------------------------------------number of iterations = 14gap = 2.44e-08relative gap = 5.79e-10infeasibilities = 8.52e-12Total CPU time = 244.8CPU time per iteration = 17.5termination code = 0----------------------------------------------------Percentage of CPU time spent in various parts----------------------------------------------------chol pred steplen corr steplen misc0.2 89.2 1.7 6.8 1.7 0.4----------------------------------------------------9 Numerical resultsThe tables below show the performance of the algorithms discussed in Section 2 and3 on the �rst eight SDP examples described in Section 6. The result for each exampleis based on ten random instances with normally distributed data generated via theMatlab command randn. The initial iterate for each problem is infeasible, generatedfrom infeaspt.m with the default option. Note that the same set of random instancesis used throughout for each example.In Tables 2 and 3, we use the default values (given in Section 5) for the parametersused in the algorithms, except for OPTIONS.gaptol and OPTIONS.scale data, whichare set to 1e-13 and 1, respectively.In our experiments, let us call an SDP instance successfully solved by AlgorithmIPC if the algorithm manages to reduce the relative duality gap X �Z=max(1; jC�Xj)to less than 10�6 while at the same time the infeasibility measure � is less than therelative duality gap. For Algorithm HPC, we call an SDP instance successfully solvedif the relative duality gap is less than 10�6 while the infeasibility measure � is at most5 times more than the relative duality gap. We do not terminate the algorithms whenthis measure of success is attained.All of the SDP instances (a total of 640) considered in our experiments were suc-cessfully solved, except for only three ETP instances and one Logarithmic Chebyshevinstance where Algorithm HPC using the AHO direction failed. This indicates thatour algorithms are probably quite robust.33
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The results in Tables 2 and 3 show that the behavior of Algorithms IPC and HPCare quite similar in terms of e�ciency (as measured by the number of iterations) andaccuracy on all the the four search directions we implemented. Note that we givethe number of iterations and the CPU time required to reduce the duality gap bya factor of 1010 compared to its original value (the relative gap may then be stilltoo large to conclude \success"), and also the minimum relative gap achieved by eachmethod. For both algorithms, the AHO and GT directions are more e�cient and moreaccurate than the HKM and NT directions, with the former and latter pairs havingsimilar behavior in terms of e�ciency and accuracy. E�ciency can alternatively bemeasured by the total CPU time required. The performances of Algorithms IPC andHPC are also quite similar in terms of the CPU time taken to reduce the dualitygap by a prescribed factor on all the four directions. But in this case, the NT andHKM directions are the fastest, followed by the GT direction which is about 20% to30% slower, and the AHO direction is the slowest | it is usually at least about 60%slower.

34
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Algorithm IPC Ave. no. of iterationsto reduce the dualitygap by 1010 Ave. CPU time (sec.)to reduce the dualitygap by 1010 Accuracymean(jlog10(X � Z)j)AHO GT HKM NT AHO GT HKM NT AHO GT HKM NTrandomSDP n = 50m = 50 10.6 11.2 12.7 11.7 15.8 12.1 11.1 10.7 7.4 6.4 6.1 5.8Norm min.problem n = 100m = 26 9.1 9.4 10.8 11.0 39.4 29.3 23.4 26.5 11.9 12.4 9.6 9.1Cheby. approx.of a real matrix n = 100m = 26 8.8 9.3 10.8 11.5 37.9 28.4 24.8 27.5 13.7 13.6 10.8 10.5Maxcut n = 50m = 50 9.9 10.5 11.5 11.7 11.3 7.9 5.8 6.2 10.9 9.8 9.0 8.7ETP n = 100m = 50 17.1 17.5 20.3 19.9 25.6 17.3 14.2 14.4 8.8 8.8 7.1 7.2Lov�asz �function n = 30m � 220 11.7 11.7 12.1 12.1 53.3 29.9 23.8 21.8 11.6 10.9 10.4 10.5Log. Cheby.problem n = 300m = 51 12.6 13.0 13.7 13.7 24.6 21.2 15.2 18.2 9.6 9.7 9.7 9.8Cheby. approx.on C n = 200m = 41 9.9 10.2 11.1 11.3 15.7 14.4 11.0 13.6 12.9 13.0 10.9 10.9Table 2: Computational results on di�erent classes of SDP for Algorithm IPC. Ten random instances areconsidered for each class. The computations were done on a DEC AlphaStation/500 (333MHz). The numberX �Z above is the smallest number such that relative duality gap X �Z=(1+ jC �Xj) is less than 10�6 and theinfeasibility measure � is less than the relative duality gap.
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Algorithm HPC Ave. no. of iterationsto reduce the dualitygap by 1010 Ave. CPU time (sec.)to reduce the dualitygap by 1010 Accuracymean(jlog10(X � Z)j)AHO GT HKM NT AHO GT HKM NT AHO GT HKM NTrandomSDP n = 50m = 50 10.4 10.9 11.4 11.0 15.7 11.7 9.7 9.7 8.8 8.1 6.4 6.0Norm min.problem n = 100m = 26 10.9 10.2 11.9 11.5 48.7 32.3 25.8 27.7 11.1 11.5 9.6 9.0Cheby. approx.of a real matrix n = 100m = 26 10.1 10.1 11.8 11.1 44.4 31.6 26.9 26.4 13.7 12.8 11.1 10.5Maxcut n = 50m = 50 9.9 9.7 11.1 10.6 11.8 7.6 5.8 5.8 10.8 10.1 9.2 8.6ETP n = 100m = 50 14.3* 15.3 17.1 16.6 21.8* 15.5 12.1 12.1 9.4* 9.5 7.2 6.9Lov�asz �function n = 30m � 220 11.5 11.7 12.9 12.8 44.6 29.8 24.8 22.4 12.2 11.5 11.0 10.5Log. Cheby.problem n = 300m = 51 15.0* 12.5 13.2 13.2 31.7* 21.3 15.4 18.4 12.2* 12.9 12.4 12.4Cheby. approx.on C n = 200m = 41 9.8 9.6 10.1 10.0 16.5 14.5 10.1 12.5 13.5 13.3 11.5 11.5Table 3: Same as Table 2, but for the homogenous predictor-corrector algorithm, Algorithm HPC. The dualitygap X �Z above is the smallest number such that the relative duality gap X �Z=(1+ jC �Xj) is less than 10�6and the infeasibility measure � is at most 5 times more than the relative duality gap.* Three of the ETP instances fail because the infeasibility measure � is consistently 5 times more than therelative duality gap X �Z=(1+ jC �Xj) when the relative duality gap is less than 10�6. One of the Log. Cheby.instances fails due to step lengths going below 10�6. The numbers reported here are based on the successfulinstances.
36
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Finally, we report the performance of our algorithms on a collection of SDPLIBproblems [6] in Table 4. We use the default values for the parameters used in thealgorithms. The �gures given for each run are number of iterations, precision (�kindicates relative infeasibility and relative duality gap below 10�k), and CPU time inseconds.The following results for Algorithm IPC are obtained from a Pentium II PC,with 400MHz CPU and 256M RAM, running Linux.----------------------------------------------------------------------HKM NT GT AHO----------------------------------------------------------------------arch8 19 -9 104 23 -7 140 20 -8 597 20 -8 986control7 23 -6 489 23 -6 462 22 -5 821 22 -6 1301control10 25 -6 2776 24 -6 2542 24 -6 4543 23 -6 7183control11 24 -6 4265 24 -6 4022 24 -6 7118 23 -6 11686gpp250.4 15 -8 128 15 -9 170 17 -9 2030 16 -9 5814gpp500.4 16 -8 1379 16 -8 1906 17 -9 36979 14 -5 108356mcp250.1 13 -9 47 14 -9 93 13 -9 1446 12 -9 3237mcp500.1 14 -8 428 16 -9 1052 16 -9 33397 13 -9 72025qap9 15 -8 105 15 -8 107 15 -8 435 16 -7 811qap10 14 -8 228 14 -7 230 14 -8 891 14 -8 1660ss30 19 -9 289 22 -7 435 18 -8 3210 19 -9 6061theta3 14 -9 279 14 -10 290 13 -8 1950 12 -9 3380theta4 15 -8 1421 14 -9 1354 15 -9 10625 13 -9 15962theta5 15 -8 5024 14 -9 4750 t ttruss8 22 -6 573 21 -6 577 24 -7 985 27 -7 1567equalG11 17 -8 6050 17 -9 8391 t tmaxG11 14 -8 1717 14 -9 3815 15 -9 197092 tmaxG51 17 -8 4642 16 -9 9738 t tqpG11 14 -8 2457 m m m----------------------------------------------------------------------m: available memory exceeded.t: problem was terminated because it was taking too long to finish.AcknowledgmentsThe authors thank Christoph Helmberg for many constructive suggestions. The au-thors also thank Brain Borchers for making his collection of SDP test problems [6]available to the public, and to Hans Mittelmann [20] for testing the previous versionsof SDPT3 on the SDPLIB problems which shed light into some of the weaknesses ofthe previous versions.References[1] J. O. Aasen, On the reduction of a symmetric matrix to tridiagonal form, BIT11 (1971), pp. 233-242.[2] F. Alizadeh, Interior point methods in semide�nite programming with applica-tions to combinatorial optimization, SIAM J. Optimization, 5 (1995), pp. 13{51.37
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