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Abstract

This software package is a MATLAB implementation of infeasible path-following al-
gorithms for solving standard semidefinite programming (SDP) problems. Mehrotra-
type predictor-corrector variants are included. Analogous algorithms for the homoge-
neous formulation of the standard SDP problem are also implemented. Four types of
search directions are available, namely, the AHO, HKM, NT, and GT directions. A
few classes of SDP problems are included as well. Numerical results for these classes
show that our algorithms are fairly efficient and robust on problems with dimensions
of the order of a few hundreds.
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1 Introduction

This is a software package for solving the standard SDP problem:

(P) miny C e X
AkOX:bk, kzl,...,m (1)
X =0,

where A € H", C € H"™ and b € IR™ are given data, and X € H" is the variable,
possibly complex. Here H"™ denotes the space of n x n Hermitian matrices, P e ()
denotes the inner product Tr(P*@), and X > 0 means that X is positive semidefinite.
We assume that the set {A;,..., Ag} is linearly independent. (Linearly dependent
constraints are allowed; these are detected and removed automatically. However,
if this set is nearly dependent, transformation to a better-conditioned basis may
be advisable for numerical stability.) The software also solves the dual problem
associated with (P):

(D) maxy, z by

Sl ykAr + Z = C (2)
Z >0,

where y € IR™ and Z € H" are the variables.
This package is written in MATLAB version 5.0. It is available from the internet
sites:

http://www.math.nus.edu.sg/ "mattohkc/index.html
http://www.math.cmu.edu/ reha/sdpt3.html

The purpose of this software package is to provide researchers in SDP with a
collection of reasonably efficient and robust algorithms that can solve general SDPs
with matrices of dimensions of the order of a hundred. If your problem is large-scale,
you should probably use an implementation that exploits problem structure. The
only structures we exploit in this package are sparsity and block-diagonal structure,
where MATLAB cell arrays are used to handle dense and sparse blocks separately. We
hope that researchers in SDP may benefit from the algorithmic and computational
framework provided by our software in developing their own algorithms. We also
hope that the computational results provided here will be useful for benchmarking.
To facilitate other authors in evaluating the performance of their own algorithms, we
include a few classes of SDP problems in this software package as well.

Our software is designed for general SDPs, where we do not exploit any special
structures present in the data Aq,---, A, and C except for sparsity and block diago-
nal structures as mentioned above. For SDP problems where the data has additional
structure, such as that arising from the SDP relaxations of the maximum cut or graph
partitioning problems, specialized algorithms such as the dual-scaling algorithm pro-
posed by Benson et al. [5] and the nonsmooth methods proposed by Helmberg and
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Rendl [13] and Burer and Monteiro [10] can certainly outperform a general purpose
code like ours by orders of magnitude to achieve moderately accurate solutions. How-
ever, for problems with sparsity and structure that is not well understood (and so a
specialized code is not available), our generic approach exploiting sparsity is worth
trying.

A special feature that distinguishes this SDP software from others (e.g., [4],[8],[7],[12],
[31]) is that complex data are allowed, a feature shared by the SeDuMi code of Sturm
[25]. But note that b and y must be real. Another feature of our package, also shared
by the software of [7],[12] and [25], is that the sparsity of matrices Ay, is fully exploited
in the computation of the Schur complement matrix required at each iteration of our
SDP algorithms. Lastly, we calculate the step-lengths required for the iterates in each
interior-point iteration via the Lanczos iteration [24]. This method is cheaper com-
pared to the backtracking scheme with Cholesky factorization and the QR algorithm
currently employed in all the SDP softwares mentioned in this paper.

Part of the codes for real symmetric matrices is originally based on those by
Alizadeh, Haeberly, and Overton, whose help we gratefully acknowledge.

Section 2 discusses our infeasible-interior-point algorithms, while our homogeneous
self-dual methods are described in Section 4. Initialization is detailed in Section 4,
and Section 5 outlines how the package is called and input and output arguments. In
Section 6 we give some examples, while Section 7 contains some sample runs. Section
8 describes some specialized routines for computing the Schur complement matrix,
and we conclude in Section 8 with some numerical results.

2 Infeasible-interior-point algorithms

2.1 The search direction
For later discussion, let us first introduce the operator A defined by
A:H" — IR™,
Al e X
AX = : . (3)
An,eX

The adjoint of A with respect to the standard inner products in H™ and IR™ is the
operator

A R™ — HY,
Ay = 3Tk yr Ak (4)

The main step at each iteration of our algorithms is the computation of the search
direction (AX, Ay, AZ) from the symmetrized Newton equation (with respect to an
invertible matrix P which is usually chosen as a function of the current iterate X, 7)
given below.
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A*Ay + AZ = Ry = C— 7 A%y
AAX = r, = b-AX (5)
EAX + FAZ = R, = oul — Hp(XZ),

where 4 = X e Z/n and o is the centering parameter. Here Hp is the symmetrization
operator defined by

Hp: Q" — H"
Hp(U) =  [PUP™ 4+ P*U*P*], (6)

and £ and F are the linear operators
E=PxP*Z F = PX®P T, (7)
where R (x) T denotes the linear operator defined by
R®T :H" — H"
R®T(U) = 3 [RUT* + TUR"]. (8)

Assuming that m = O(n), we compute the search direction via a Schur complement
equation as follows (the reader is referred to [3] and [26] for details). First compute
Ay from the Schur complement equation

MAy = h, (9)

where
M = AE ' FA*, (10)
h =1, + AEYF(Ry) — AEY(R,). (11)

Then compute AX and AZ from the equations
AZ = Rg— A*Ay (12)
AX = E&'R.—E'F(AZ). (13)

If m > n, solving (9) by a direct method is overwhelmingly expensive; in this
case, the user should consider using an implementation that solves (9) by an iterative
method such as the conjugate gradient or quasi-minimal residual method [23]. In
our package, (9) is solved by a direct method such as LU or Cholesky decomposition
with the implicit assumption that m = O(n) and m is at most a few hundred. If the
SDP data is dense, we recommend that n is no more than about 200 so that the SDP
problem can be comfortably solved on a fast workstation with, say, 200MHz speed.
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2.2 Computation of specific search directions

In this package, the user has four choices of symmetrizations resulting in four different
search directions, namely,

(1) the AHO direction [3], corresponding to P = I;
(2) the HKM direction [14],[16],[21], corresponding to P = Z'/?;

(3) the NT direction [26], corresponding to P = N !, where N is the unique matrix
such that D := N*ZN = N ' XN * is a diagonal matrix (then W := NN* is
the NT scaling matrix with WZW = X); and

(4) the GT direction [27], corresponding to P = D'/2G~*, where the matrices D and
G are defined as follows. Suppose X = G*G and Z = H*H are the Cholesky
factorizations of X and Z respectively. Let the SVD of GH* be GH* = UXV*.
Let ¥ and ® be positive diagonal matrices such that the equalities U*G = UG
and V*H = ®H hold, with all the rows of G and H having unit norms. Then
D =%(vd) L.

To describe our implementation SDPT3, a discussion on the efficient computation
of the Schur complement matrix M is necessary, since this is the most expensive step
in each iteration of our algorithms where usually at least 50% to 80% of the total
CPU time is spent. From equation (10), it is easily shown that the (i, ) element of
M is given by

Mij = Aiogilf(Aj). (14)

Thus for a fixed j, computing first the matrix 571]_—(14],) and then taking its inner
product with each A;, i =1,...,m, give the jth column of M.

However, the computation of M for the four search directions mentioned above
can also be arranged in a different way. The operator £ 'F corresponding to these
four directions can be decomposed generically as

ETIF(4)) = (R"®T)(Dyo (D2 ® I)(R®T(4))))), (15)

where o denotes the Hadamard (elementwise) product and the matrices R, T', D1,
and Dy depend only on X and Z. (Note that for the HKM direction, R () T' should
be replaced by the linear map defining the Kronecker product R ® 7" in (15).) Thus
the (i,7) element of M in (14) can be written equivalently as

Mi; = (R®T(A;)) e (D1o[(D:®I)(R®T(4;))]). (16)

Therefore the Schur complement matrix M can also be formed by first computing
and storing R ® T'(A;) for each j = 1,...,m, and then taking inner products as in
(16).

Computing M via different formulas, (14) or (16), will result in different compu-
tational complexities. Roughly speaking, if most of the matrices Ay are dense, then it
is cheaper to use (16). However, if most of the matrices Ay are sparse, then using (14)
will be cheaper because the sparsity of the matrices Ay can be exploited in (14) when
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taking inner products. For the sake of completeness, in Table 1, we give an upper
bound on the complexity of computing M for the above mentioned search directions
when computed via (14) and (16). (Here we have assumed that all A;’s are dense; if
they are block diagonal with dense blocks, each term n

3

a sum of the cubes or squares of the block dimensions.)

or n? should be replaced by

directions | PPer bollllsr;igo?l(g))mplexity upper boillsr;igor(lli())mplexity
AHO 4mn? + m?*n? 6%mn3 + m?n?
HKM 2mn® + m?n? 4mn® + 0.5m*n?
NT mn?® + 0.5m>n? 2mn® + 0.5m*n?
GT 2mn?® + 0.5m?*n? 4%mn3 + 0.5m*n?

Table 1: Upper bounds on the complexities of computing M (for real SDP
data) for various search directions. We count one addition and one multiplica-
tion each as one flop. Note that all directions other than the HKM direction
require an eigenvalue decomposition of a symmetric matrix in the computation
of M.

The reader is referred to [3], [26], and [27] for more computational details, such as
the actual formation of M and h, involved in computing the above search directions.
The derivation of the upper bounds on the computational complexities of M computed
via (14) and (16) is given in [27]. The issue of exploiting the sparsity of the matrices
Ay, is discussed in full detail in [11] for the HKM and NT directions, whereas an
analogous discussion for the AHO and GT directions can be found in [27].

Let NZ be the total number of nonzero elements of Ay, - - -
tation, we consider the following two cases in exploiting possible sparsity in the SDP
data:

, Ay, In our implemen-

if NZ exceeds a certain fraction of mn?,
we decide on the formula to use for computing M based on the CPU time

taken during the third and fourth iteration to compute M via (16) and (14),
respectively. We do not base our decision on the first two iterations for two
reasons. Firstly, if the initial iterates X and Z° are diagonal matrices, then
the CPU time taken to compute M during these two iterations would not be
an accurate estimate of the time required for subsequent iterations. Secondly,
there are overheads incurred when variables are first loaded into MATLAB

workspace.
else

we use (14) throughout.

We should mention that when (14) is used, we further exploit the sparsity of the
matrices Ay, ---, Ay, based on the ideas proposed in [12]. The reader is referred to

6
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[12] for the details.

2.3 The primal-dual path-following algorithm

The algorithmic framework of our primal-dual path-following algorithm is as follows.
We note that most of our implementation choices here and in our other algorithms
are based on minimizing either the number of iterations or the CPU time of the
linear algebra involved in computing the Schur complement. In the computation of
the eigenvalues necessary in our choice of step-size, we used an iterative solver, the
Lanczos iteration. If we assume that the Cholesky factors of X and Z are given,
this method requires only O(n?) flops instead of @(n?) flops as required by Cholesky
factorization or the QR algorithm to compute the step-size. A detailed discussion on
computing the step-size via the Lanczos iteration is given in [29].

Algorithm IPF. Suppose we are given an initial iterate (X°,5°, Z%) with X°, Z° positive
definite. Decide on the symmetrization operator Hp(-) to use. Set 4° = 0.9 and ¢° = 0.5.

For £k =0,1,...

(Let the current and the next iterate be (X,y,Z) and (X+,y*, ZT) respectively. Also, let
the current and the next step-length (centering) parameter be denoted by v and 4+ (¢ and
o) respectively.)

e Set p=X e Z/n and

PR -] n

max(1, [|b]]) © max(1, [|C] )

Stop the iteration if the infeasibility measure ¢ and the duality gap X e Z are suffi-
ciently small.

e Compute the search direction (AX, Ay, AZ) from the equations (9), (12) and (13).
o Update (X,y,Z) to (X*,y*,Z7") by

Xt = X+aAX, y" =y+BAy, ZT = Z+BAZ, (18)

where

. - . -
a = min (1/ m) , ﬂ = min (1/ m) . (19)

(Here Apin(U) denotes the minimum eigenvalue of U; if the minimum eigenvalue in
either expression is positive, we ignore the corresponding term.)

e Update the step-length parameter by
v" = 0.9+ 0.09min(a, ), (20)

and the centering parameter by 6™ = 1 — 0.9 min(a, 3).
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Remarks.

(a) Note that, if & < 1 in (19), then the step is vy times that making X positive
semidefinite but not positive definite, and similarly for #. Hence the step is a
constant () multiple of the longest feasible step, or the full Newton-like step.
The adaptive choice of the step-length parameter «y in (20) is used as the default
in our implementation, but the user has the option of fixing the value of y. The
motivation for using adaptive step-length and centering parameters is as follows.
If large step sizes for @ and 8 have been taken, this indicates that good progress
was made in the previous iteration, so more aggressive values for the step-length
parameter v* and centering parameter o+ can be chosen for the next iteration
so as to get as much reduction in the total complementarity X e Z (we often call
this the duality gap; it is equal if both iterates are feasible) and infeasibilities
as possible. On the other hand, if either a or 8 is small, this indicates that
(XT,yT,Z") is close to the boundary of H'': in this case, we would want to
concentrate more on centering in the next iteration by using less aggressive
values for y© and o™.

(b) If AX and AZ are orthogonal (which certainly holds if both iterates are feasible)
and equal steps are taken in both primal and dual, then the reduction in the
infeasibilities is exactly by the factor (1 — «), and that in the total complemen-
tarity is exactly by the factor (1 —«(1 —0)); thus we expect the infeasibilities to
decrease faster than the total complementarity. We often observed this behavior
in practice and do not otherwise ensure that infeasibilities decrease faster than
the total complementarity.

(c) It is known that as the parameter p decreases to 0, the norm ||r,|| will tend to
increase, even if the initial iterate is primal feasible, due to increasing numerical
instability of the Schur complement approach. In our implementation of the
algorithms, the user has the option of correcting for the loss in primal feasibility
by projecting A X onto the null space of the operator A. That is, before updating
to X1, we replace AX by

AX — A*D TA(AX),

where D = AA*. Note that this step is inexpensive. The m x m matrix D
only needs to be formed once at the beginning of the algorithm. Typically, this
option might lose one order of magnitude in the duality gap achieved, but gain
sometimes two or three orders of magnitude in the final primal feasibility.

(d) We only described termination when approximately optimal solutions are at
hand. Nevertheless, our codes stop when any of the following indications arise:

e The step-length taken in either primal or dual spaces becomes very small,
in which case the message ¢ ‘steps in predictor too short’’ will be
displayed.

(33

e If ;1 and ¢ are both less than 10~8, we terminate if the reduction in the total
complementarity is significantly worse than that for the previous few itera-
tions, in which case the message ¢ ‘lack of progress in the predictor
step’’ will be displayed.
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e We also stop if we get an indication of infeasibility, as follows. If the current
iterate has b’y much larger than || A*y + Z||, then a suitable scaling is an
approximate solution of by = 1, A*y+Z = 0, Z > 0, which is a certificate
that the primal problem is infeasible. Similarly, if —C' e X is much larger
than || AX||, we have an indication of dual infeasibility: a scaled iterate is
then an approximate solution of C'e X = —1, AX =0, X = 0, which is a
certificate that the dual problem is infeasible. In either case, we return the
appropriate scaled iterate suggesting primal or dual infeasibility.

e Termination also occurs if either X or Z is numerically not positive definite,
if the Schur complement matrix M becomes singular or too ill-conditioned
for satisfactory progress, or if the iteration limit is reached. Our other
algorithms described in the following pages also terminate if one of these
situations occurs.

2.4 The Mehrotra-type predictor-corrector algorithm

The algorithmic framework of the Mehrotra-type predictor-corrector [19] variant of
the previous algorithm is as follows.

www.manharaa.com




Algorithm IPC. Suppose we are given an initial iterate (X°,4°, Z%) with X° Z° positive
definite. Decide on the type of symmetrization operator Hp(-) to use. Set 7* = 0.9. Choose
a value for the parameter expon used in the exponent e.

For £k =0,1,...
(Let the current and the next iterate be (X,y, Z) and (X*,y™, Z1) respectively, and simi-
larly for v and y+.)

e Set u =X o Z/n and ¢ as in (17). Stop the iteration if the infeasibility measure ¢
and the duality gap X e Z are sufficiently small.

e (Predictor step)
Solve the linear system (9), (12) and (13) with ¢ = 0, i.e., with R, = —Hp(XZ).

Denote the solution by (0X,dy,dZ). Let oy, and G, be the step-lengths defined as in
(19) with AX, AZ replaced by §dX,dZ, respectively.

e Take o to be

. (X +0a,0X)e(Z+£,07)]°
= 1 , 21
o m1n< , [ X ez , (21)
where the exponent e is chosen as follows:
1 if 4 > 107% and min(a,, 8,) < 1/V/3,
e = < max[expon,3min(a,, 8,)?] if 4> 107% and min(ay,, 3,) > 1/V3, (22)

max[1, min[ezpon, 3 min(ay,, 8,)?]] if p < 1076,

e (Corrector step)

Compute the search direction (AX, Ay, AZ) from the same linear system (9), (12)
and (13) but with R, replaced by

R, = oul —Hp(XZ) - Hp(6X52Z).

e Update (X,y, Z) to (X*,y*, Z%) asin (18), where o and 3 are computed as in (19)
with v chosen to be

v = 0.9+ 0.09min(ay, Bp).

Update v to y* as in (20).

Remarks.

(a) The default choices of expon for the AHO, HKM, NT, and GT directions are
expon = 3,1,1,1, respectively. We observed experimentally that using expon =
2 for the HKM and NT directions seems to be too aggressive, and usually results
in slightly poorer numerical stability when p is small than the choice expon = 1.
We should mention that the choice of the exponent e in Algorithm IPC above
is only a rough guide. The user might want to explore other possibilities.

(b) In our implementation, the user has the option to switch from Algorithm IPF

10
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to Algorithm IPC once the infeasibility measure ¢ is below a certain threshold
specified by the variable sw2PC_tol. This option is for the convenience of the
user; such a strategy was recommended in an earlier version of [3].

(c) Once again, we also terminate if the primal or dual step-length is too small, in
which case the message ‘¢ ‘steps in predictor too short’’ or
corrector too short’’ will be displayed, or we get an indication of primal or
dual infeasibility. If 4 and ¢ are both less than 10~%, we terminate if the reduc-
tion in the total complementarity in the predictor step is significantly worse than
that for the previous few iterations. Similar termination also applies to the cor-
rector step with displayed message ¢ ‘lack of progress in the corrector

‘‘steps in

step’’, unless the reduction in the total complementarity corresponding to the
predictor point (X + o, 0X,y + B0y, Z + B, 0Z) is satisfactory. In the latter
case, the iterate (X+,y*, Z7T) is taken to be this good predictor point and a
corresponding message ‘ ‘update to good predictor point’’ is displayed.

3 Homogeneous and self-dual algorithms

Homogeneous embedding of an SDP in a self-dual problem was first developed by
Potra and Sheng [22], and subsequently extended independently by Luo et al. [17]
and de Klerk et al. [15]. The implementation of such homogeneous and self-dual
algorithms for SDP first appeared in [9], where they are based on those appearing
in [32] for linear programming (LP). Our algorithms are also the SDP extensions of
those appearing in [32] for LP. However, we use a different criterion for choosing equal
versus unequal primal and dual step-lengths in the iteration process.

3.1 The search direction
Let A be the operator

A:HY — R™,
A10X
A0 X
—CeX

Then the adjoint of A with respect to the standard inner products in H" and IR™*!
is the operator

A* R s A,

T

A < y) = Doy ykAr — 7C.

11
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Our homogeneous and self-dual linear feasibility model for SDP based on that
appearing in [32] for LP has the following form:

A*(f)JrZ:o
(30 () e
=0,

XZ

7k = 0,

where X, Z, 7, k are positive semidefinite. A solution to this system with 7+ k positive
either gives optimal solutions to the SDP and its dual or gives a certificate of primal
or dual infeasibility.

At each iteration of our algorithms, we apply a variant of Newton’s method to a
perturbation of equation (23), namely,

fl*(i)+zzo
AX+<b0T Ob><f>—<2_>=0 (24)

X7 = oul, 7K = opu,

where o is a parameter.

Similarly to the case of infeasible path-following methods, the search direction
(AX, Ay, AZ, A1, Ak) at each iteration of our homogeneous algorithms is computed
from a symmetrized Newton equation derived from the perturbed equation (24), but
now with an extra perturbation added, controlled by the parameter 7:

[ Ay s
A ( Ar ) + AZ = nRy
p 0 —b Ay o 0
AAX+<bT KJ/’T)(AT) —777'p+<rc/7> (25)
EAX + FAZ = R,
TAK + KAT= 1,

where Hp(X Z) and £, F are defined as in (6) and (7), respectively, and

Ry = —-A* ( J ) -z, (26)

T

12
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. 0 0 —b .
() D)

XeZ+71K
= - 28
. n+1 (28)
Te = O — TK,
R. = oul —Hp(XZ).

In fact, we choose the parameter 1 to be 1 — 0. This ensures (with any of our
choices of P) that AX ¢ AZ + ATAkx = 0, so that equal step sizes of « in both
primal and dual will give new iterates with infeasibilities and total complementarity
reduced by the same factor 1 — «(1 — o). This aids convergence. Also in this case,
the search directions coincide with those derived from the semidefinite extension of
the homogeneous self-dual programming approach of Ye, Todd, and Mizuno [33].

We compute the search direction via a Schur complement equation as follows.
First compute Ay, A7 from the equation

e (I (5) = ®

M = AE'FA*, (30)

where

h = ni, + ( 0 ) + nAEVFRy — AETIR,. (31)
re)T
Then compute AX, AZ, and Ak from the equations

AZ = an—A*<Ay>

AT
2
AX = E&'R. - ET'FAZ (32)
Ak = (r. — KAT)/T.

3.2 Primal and dual step-lengths

As in the case of infeasible path-following algorithms, using different step-lengths
in the primal and dual updates under appropriate conditions can enhance the per-
formance of homogeneous algorithms. QOur purpose now is to establish one such
condition.

Suppose we are given the search direction (AX, Ay, AZ, A1, Ak). Let

T, = T+ aAT, Ty = T+ BAT. (33)
Suppose (X,y, Z, 7, ) is updated to (X, y*, Z* 77 k™) by
k+alAk, ifrt =1,

TR +
7t = min(7,, 74 Kkt = .
(7, 7a). { k+BAk, ifrT =1,

(34)
Xt = (X +alAX), yt = T(y+BAy), 2t = T (Z+BAZ)

13
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Then it can be shown that the scaled primal and dual infeasibilities, defined respec-
tively by

ry (@) = b AXT/1T),  Rj(B) = C-Z"/r" —A(y"/T"), (35)
satisfy the relation

1—an

. 1—pn
1+aAr/r P

+ - ~=F
p 1+ BAT/T Ra,

ri(a) =

Ry (B) = (36)

where
rp=b— A(X/1), Ry=C—Z|t— A*(y/7). (37)

Our condition is basically determined by considering reductions in the norms of the
scaled infeasibilities. To determine this condition, let us note that the function f(¢) :=
(1 —tn)/(L +tA7/7), t € [0,1], is decreasing if A7 > —n7 and increasing otherwise.
Using this fact, we see that the norms of the scaled infeasibilities ./ (), Ry (B) are
decreasing functions of the step-lengths if A7 > —n7 and they are increasing functions
of the step-lengths otherwise.

Let & and ,@ be v times the maximum possible primal and dual step-lengths that
can be taken for the primal and dual updates, respectively (where 0 < v < 1). To keep
the possible amplifications in the norms of the scaled infeasibilities to a minimum, we
set « and (8 to be min(d,ﬁ) when AT < —n7; otherwise, it is beneficial to take the
maximum possible primal and dual step-lengths so as to get the maximum possible
reductions in the scaled infeasibilities. For the latter case, we take different step-
lengths, @« = & and 8 = (3, provided that the resulting scaled total complementarity
is also reduced, that is, if

XteZT + 7kt XeoeZ+17K
(77)2 -2 )

(38)

when we substitute & = & and § = § into (33) and (34).

To summarize, we take different step-lengths, @« = & and 8 = 8, for the primal
and dual updates only when A7 > —n7 and (38) holds; otherwise, we take the same
step-length min(é, B) for « and S.

3.3 The homogeneous path-following algorithm

Our homogeneous self-dual path-following algorithms and their Mehrotra-type predictor-
corrector variants are modeled after those proposed in [32] for LP and the infeasible
path-following algorithms discussed in Section 2.

The algorithmic framework of these homogeneous path-following algorithm is as
follows.

14
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Algorithm HPF. Suppose we are given an initial iterate (X y°, 29 79 k%) with
X0 70 79 k0 positive definite. Decide on the symmetrization operator Hp(-) to use. Set
7% =10.9, 0% =0.1, and n° = 0.9.

For £ =0,1,...

(Let the current and the next iterate be (X,y, Z, 7, k) and (X+,y*,S*, 77, k1) respectively.
Also, let the current and the next step-length (centering) parameter be denoted by + and
vT (o and o) respectively.)

e Set u=(XeoZ+7K)/(n+1)and

70— AX]|  [I7C - Z - Ayllr

¢ = max (Tmax(l,”bﬂ)’ Tmax(1, ||C|| r) ) o

Stop the iteration if either of the following occurs:

(a) The infeasibility measure ¢ and the duality gap X e Z/7? are sufficiently small.
In this case, (X/7,y/7,Z/7) is an approximately optimal solution of the given
SDP and its dual.

(b)

max (ﬁ, T/x ) is sufficiently small.
Mo To/ko

In this case, either the primal or the dual problem (or both) is suspected to be
infeasible.

e Compute the search direction (AX, Ay, AZ A7, Ak) from the equations (29) (32)
usingn =1-o.

o Let
a@ = min|1, 7 , 7 , 7 ,
Amin(X7TAX) 77TAT7 s~ 1Ak
(40)
A . - - -
= 1 .
p i ( "Aam(ZAZ) TAT nlAka)
(If any of the denominators in either expression is positive, we ignore the correspond-
ing term.)

If A7 > —n7 and (38) holds, set & = & and 8 = 3; otherwise, set o = 3 = min(a, ﬂA)
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o Let
T, = T+alAr, 14 = 7+ BAT.

Update (X,y, Z,7,k) to (XT,yT, Z% 7% &T) by

k+alAk, ifrtt =1
+ — mi + = ’ p
4 min(7y, 7a), " { k+ BAk, ifrtt =14
(41)
Xt = (X +aAX), yt =T (y+BAy), 2T =T (Z+BAZ)
e Update the step-length parameter by
v" = 0.9+ 0.09min(a, 8), (42)

and let

ot =1-0.9min(a, B).

3.4 The homogeneous predictor-corrector algorithm

The Mehrotra-type predictor-corrector variant of the homogeneous path-following
algorithm is as follows.

Algorithm HPC. Suppose we are given an initial iterate (X y° 29 79 k%) with
X0, 70 79 k0 positive definite. Decide on the type of symmetrization operator Hp(-) to
use. Set v° = 0.9. Choose a value for the parameter expon used in the exponent e.
For £k =0,1,...

(Let the current and the next iterate be (X,y,Z,7,&) and (XT,y", Z7, 77 k™) respec-
tively. Also, let the current and the next step-length parameter be denoted by v and ~*
respectively.)

e Set pu = (X eoZ+7k)/(n+1) and ¢ as in (39). Stop the iteration if either of the
following occurs:

(a) The infeasibility measure ¢ and the duality gap X e Z/7% are sufficiently small.

(b)

max (ﬁ, T/k ) is sufficiently small.
Mo To/kKo

e (Predictor step)
Solve the linear system (29)—(32), with 0 =0 and n = 1, i.e., with R, = —Hp(X 7).
Denote the solution by (6X,dy,d0Z,d7,dk). Let ay, and B, be defined as in (40) with
AX,AZ, A7, Ak replaced by 6X,8Z, 67, 0k, respectively.
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e Take o to be

o — min (1 (X +a,0X)e(Z+B,0Z) + (T +a,d7)(k + By 0K)]°
- ’ XeoeZ + 1K ’
where the exponent e is chosen as in (22). Set n = 1 —o.

e (Corrector step)

Compute the search direction (AX, Ay, AZ A1, Ak) from the same linear system
(29)—(32) but with R, r. replaced, respectively, by

R, = opl — Hp(XZ)— Hp(6X6Z)

ry = Op—TKk—0TOK.

e Update (X,y,Z,7,k) to (XT,y™, ZT 77 kT) asin (41), where a and 3 are computed
as in (40) with 7 chosen to be

v = 0.9+ 0.09 min(ay,, Bp).

Update v to vT as in (42).

Remarks for Algorithms HPF and HPC.

(a) The numerical instability of the Schur complement equation (29) arising from
the homogeneous algorithms appears to be much more severe than that of the
infeasible path-following algorithms as u decreases to zero. We overcome this
difficulty by first setting A7 = 0 and then computing Ay in (29) when pu is
smaller than 1078, This amounts to switching to the infeasible path-following
algorithms where the Schur complement equation (9) is numerically more stable.

(b) For the homogeneous algorithms, it seems not desirable to correct for the primal
infeasibility so as keep it below a certain small level once that level has been
reached via the projection step mentioned in Remark (c) of Section 2.3. The
effect of such a correction can be quite erratic, in contrast to the case of the
infeasible path-following algorithms described in Section 2.

(c) Once again, there are other termination criteria: lack of positive definiteness,
lack of progress, or short step-lengths. We also test possible infeasibility in the
same way we did for our infeasible-interior-point algorithms, because it gives
explicit infeasibility certificates, and possibly gives an earlier indication than
the specific termination criterion (item (b) in the algorithm descriptions above)
to detect infeasibility.

(Remarks (a) and (b) are based on computational experience rather than our having
any explanation at this time.)
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4 Initial iterates

Our algorithms can start with an infeasible starting point. However, the performance
of these algorithms is quite sensitive to the choice of the initial iterate. As observed
in [12], it is desirable to choose an initial iterate that at least has the same order of
magnitude as an optimal solution of the SDP. Suppose the matrices Ay and C are
block diagonal with the same structure, each consisting of L diagonal blocks of square
matrices of dimensions nq,ns,...,nr. Let A,(j) and C(® denote the ith block of Ay
and C| respectively. If a feasible starting point is not known, we recommend that the
following initial iterate be used:

X% = Diag(& I,,), " =0, 2Z° = Diag(n; I,,), (43)
where i = 1,..., L, I,,, is the identity matrix of order n;, and
141b 1 Al c
b e el L maxfmaxe (1A ), OV ]

NG

If we multiply the identity matrix I,,, by the factors &; and n; for each ¢, the initial
iterate has a better chance of having the same order of magnitude as an optimal
solution of the SDP.

The initial iterate above is set by calling infeaspt .m, with initial line

i

function [X0,y0,Z0] = infeaspt(blk,A,C,b,options,scalefac),

where options = 1 (default) corresponds to the initial iterate just described, and
options = 2 corresponds to the choice where X0, Z0O are scalefac times identity
matrices and yO0 is a zero vector.

5 The main routine

The main routine that corresponds to the infeasible path-following algorithms de-
scribed in Section 2 is sdp.m:

[obj,X,y,Z,gaphist,infeashist,info,Xiter,yiter,Ziter] =
Sdp(blk,A,C,b,XO,yO,ZO,UPTIUNS) s

whereas the corresponding routine for the homogeneous self-dual algorithms described
in Section 3 is sdphlf.m:

[obj,X,y,Z,gaphist,infeashist,info,Xiter,yiter,Ziter,
tau,kap] = sdphlf(blk,A,C,b,X0,y0,Z0,tau0,kap0,0PTIONS).

Functions used.

sdp.m calls the following function files during its execution:
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AHOpred.m HKMpred.m NTpred.m GTpred.m

AHOcorr.m HKMcorr.m NTcorr.m GTcorr.m
ops.m blktrace.m blkchol.m blkeig.m
Asum.m Prod2.m Prod3.m nonzerolist.m
steplength.m validate.m scaling.m preprocess.m.
aasen.m Atriu.m corrprim.m

sdphlf.m calls the same set of function files except that the first two rows in the list
above are replaced by

AHOpredhlf.m HKMpredhlf.m NTpredhlf.m GTpredhlf.m
AHOcorrhlf.m HKMcorrhlf.m NTcorrhlf.m GTcorrhlf.m.

In addition, sdphlf .m calls the function file schurhlf.m.

Input arguments.

blk: a cell array describing the block structure of the A;’s and C' (see below).

A: a cell array with m columns such that the kth column corresponds to
the matrix Ayg.

C, b: given data of the SDP.
X0, y0, Z0: an initial iterate.
tau0, kapO: initial values for 7 and x (sdphlf.m only).

OPTIONS: a structure array of parameters — see below.

If the input argument OPTIONS is omitted, default values are used. For sdphlf.m, if
also input arguments tau0 and kapO are omitted, default values of 1 are used.

Output arguments.

obj =[CeX DbTy].

X,y,Z: an approximately optimal solution (with normal termination; it could alternatively
give an approximate certificate of infeasibility — see below).

gaphist: a row vector that records the total complementarity X e Z at each iteration.

infeashist: a row vector that records the infeasibility measure ¢ at each iteration.

info: a 1 x 5 vector that contains performance information:
info (1) = termination code,
info(2) = number of iterations taken,
info(3) = final duality gap,
info(4) = final infeasibility measure, and
info(5) = total CPU time taken.
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info(1) takes on ten possible integral values depending on the termination

conditions:

info(1) = 0 for normal termination;

info(1) = -1 for lack of progress in either the predictor or corrector step;
info(1) = -2 if primal or dual step-lengths are too short;

info (1) = -3 if the primal or dual iterates lose positive definiteness;
info(1) = -4 if the Schur complement matrix becomes singular;

info(1) = -5 if the Schur complement matrix becomes too ill-conditioned
for further progress;

info (1) = -6 if the iteration limit is reached;

info(1) = -10 for incorrect input;

info(1) = 1 if there is an indication of primal infeasibility; and

info(1) = 2 if there is an indication of dual infeasibility.

If info(1) is positive, the output variables X,y,Z have a different meaning: if
info(1) = 1 then y,Z gives an indication of primal infeasibility: b’y = 1 and
A*y + Z is small, while if info(1) = 2 then X gives an indication of dual infea-
sibility: CeX = -1 and .AX is small.

Xiter,yiter,Ziter: the last iterate of sdp.m or sdphlf.m. If desired, the user can
continue the iteration process with this as the initial iterate.

tau,kap: the last values of 7 and «, for sdphlf.m only.

Note that the user can omit the last few output arguments if they are of no interest
to him/her.

A structure array for parameters.

sdp.m and sdphlf.m use a number of parameters which are specified in a MATLAB
structure array called OPTIONS in the M-file parameters.m. If desired, the user can
change the values of these parameters. The meaning of the specified fields in OPTIONS
are as follows.

vers: type of search direction to be used, where

1 corresponds to the AHO direction,

2 corresponds to the HKM direction,
vers = 3 corresponds to the N'T direction, and
vers = 4 corresponds to the GT direction.
The default is vers = 2.

vers

vers

gam: step-length parameter. To use the default, set gam = 0; otherwise,
set gam to the desired fixed value, say gam = 0.98.

predcorr: a 0 1 flag indicating whether to use the Mehrotra-type
predictor-corrector. The default is 1.

expon: a 1 x 4 vector specifying the lower bound for the exponent to be used in
updating the centering parameter o in the predictor-corrector algorithm,
where
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expon(1): for the AHO direction,
expon(2): for the HKM direction,
expon(3): for the NT direction, and
expon(4): for the GT direction.
The default is expon = [3 1 1 1].

steptol: the step-length threshold below which the iteration is terminated.
The default is 1e-6.

gaptol: the required relative accuracy in the duality gap, i.e., X o Z/[1 + max(C e X,b"y)].
The default is 1e-8.

inftol: the tolerance for || ATy + Z|| (with b7y = 1) or || AX|| (with C X = —1)
in order to terminate with an indication of infeasibility. Also used as the
tolerance in termination criterion (b) in the homogeneous algorithms.
The default is 1e-8.

maxit: maximum number of iterations allowed. The default is 50.

sw2PC_tol: the infeasibility measure threshold below which the predictor-corrector
step is applied. The default is sw2PC_tol = Inf.

use_corrprim: a (-1 flag indicating whether to correct for primal infeasibility.
The default is 0.

printyes: a 0 1 flag indicating whether to display the result of each iteration.
The default is 1.

scale_ data: a (-1 flag indicating whether to scale the SDP data.
The default is 0.

schurfun: a string containing the initial line of user supplied function file for
computing the Schur complement matrix.
The default is [ ].

schurfun parms: a cell array containing the external parameters needed in user
supplied Schur routine described in schurfun.
The default is [ 1.

randnstate: the initial seed used for the random vector used to initiate the
Arnoldi iteration.
The default is 0.

C Mex files used.

The computation of the Schur complement matrix M requires repeated computation
of matrix products involving either matrices that are triangular or products that are
known a priori to be Hermitian. We compute these matrix products in a C Mex
routine generated from a C program mexProd2.c written to take advantage of the
structures of the matrix products. A C Mex routine generated from the C program
mexProd3nz.c computes certain elements of the products of three sparse matrices,
while another, generated from the C program mexschur.c, computes the Schur com-
plement efficiently. Likewise, computation of the inner product between two matrices

21

www.manaraa.com



is done in a C Mex routine generated from the C program mextrace.c written to take
advantage of possible sparsity in either matrix. Another C Mex routine, generated
from the C program mexAsum.c, computes the result of applying the adjoint of A to
a vector. Finally, a C Mex routine that is used in our package is generated from the
C program mexaasen.c written to compute the Aasen decomposition of a Hermitian
matrix [1]. To summarize, here are the C programs used in our package:

mextrace.c mexProd2.c mexProd3nz.c mexAsum.c

mexschur.c mexaasen.c

In addition to the source codes of these routines, corresponding binary files for a num-
ber of platforms (including Solaris, Linux, Alpha, SGI, and Windows) are available
from the internet sites mentioned in the introduction.

Cell array representation for problem data.

Our implementation SDPT3 exploits the block-diagonal structure of the given data,
A and C. Suppose the matrices Ay and C are block-diagonal of the same structure.
If the initial iterate (XY, Z%) is chosen to have the same block-diagonal structure,
then this structure is preserved for all the subsequent iterates (X, Z). For reasons
that will be explained later, if there are numerous small blocks each of dimension less
than say 10, it is advisable to group them together as a single sparse block-diagonal
matrix instead of considering them as individual blocks. Suppose now that each of
the matrices Ay and C consists of L diagonal blocks of square matrices of dimensions
ni,na,...,nr. We can classify each of these blocks into one of the following three

types:
1. a dense or sparse matrix of dimension greater than or equal to 10;

2. a sparse block-diagonal matrix consisting of numerous sub-blocks each of di-
mension less than 10; or

3. a diagonal matrix.

For each SDP problem, the block-diagonal structure of A; and C is described by
an L x 2 cell array named blk where the content of each of its elements is given as
follows. If the ith block of each Ay and C' is a dense or sparse matrix of dimension
greater than or equal to 10, then

blk{i,1} = ’nondiag’ blk{i,2} = n;
A{i,k}, C{i} = [nijxn; double] or [n;xn; sparse].

(It is possible for some A’s to have a dense ith block and some to have a sparse ith
block, and similarly the ith block of C' can be either dense or sparse.) If the ith block
of each Ay and C is a sparse (n;latrix consisting of numero(u)s small sub-blocks, say ¢
2 !

of them, of dimensions nil N ® such that Zle n,

HIRN = n;, then

blk{i,1} = ’nondiag’ blk{i,2} = [m{" a? ... a{¥]
A{i,k}, C{i} = [njxn; sparse].
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50x50

5x5

500x500

100x100

Figure 1: An example of a block-diagonal matrix.

If the ith block of each Ay and C' is a diagonal matrix, then

blk{i,1} = ’diag’ blk{i,2} = n;
A{i,k}, C{i} = [n;x1 double].

As an example, suppose each of the A;’s and C' has block structure as shown in
Figure 1; then we have

blk{1,1} = ’nondiag’ blk{1,2} = 50
blk{2,1} = ’nondiag’ blk{2,2} = [6 5 --- 5]
blk{3,1} = ’diag’ blk{3,2} = 100

and the matrices Ay and C are stored in cell arrays as
A{1,k}, c{1}

A{2,k}, c{2}
A{3,k}, C{3}

[60x50 doublel
[600x500 sparse]
[100x1 double].

Notice that when the block is a diagonal matrix, only the diagonal elements are
stored, and they are stored as a column vector.

Recall that when a block is a sparse block-diagonal matrix consisting of ¢ sub-
n @ (®)

blocks of dimensions n; ’,n,”,...,n,;”, we can actually view it as ¢ individual blocks,
in which case there will be ¢ cell array elements associated with the ¢ blocks rather
than just one single cell array element originally associated with the sparse block-
diagonal matrix. The reason for using the sparse matrix representation to handle
the case when we have numerous small diagonal blocks is that it is less efficient for
MATLAB to work with a large number of cell array elements compared to working

with a single cell array element consisting of a large sparse block-diagonal matrix.
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Technically, no problem will arise if one chooses to store the small blocks individually
instead of grouping them together as a sparse block-diagonal matrix.

We should also mention the function file ops.m used in our package. The purpose
of this file is to facilitate arithmetic operations on the contents of any two cell arrays
with constituents that are matrices of corresponding dimensions.

For the usage of MATLAB cell arrays, we refer to [18].

Complex data.

Complex SDP data are allowed in our package. The user does not have to make
any declaration even when the data is complex. Our codes will automatically detect
whether this is the case.

Caveats.

The user should be aware that semidefinite programming is more complicated than
linear programming. For example, it is possible that both primal and dual problems
are feasible, but their optimal values are not equal. Also, either problem may be
infeasible without there being a certificate of that fact (so-called weak infeasibility).
In such cases, our software package is likely to terminate after some iterations with an
indication of short step-length or lack of progress. Also, even if there is a certificate of
infeasibility, our infeasible-interior-point methods may not find it. Our homogeneous
self-dual methods may also fail to detect infeasibility, but they are practical variants
of theoretical methods that are guaranteed to obtain certificates of infeasibility if
such exist. In our very limited testing on strongly infeasible problems, most of our
algorithms have been quite successful in detecting infeasibility.

6 Example files

To solve a given SDP, the user needs to express it in the standard form (1) and
(2), and then write a function file, say problem.m, to compute the input data
blk,A,C,b,X0,y0,Z0 for the solvers sdp.m or sdphlf.m. This function file may
take the form

[blk,A,C,b,X0,y0,Z0] = problem(input arguments) .

Alternatively, one can provide the data in the input format described in [6], which is
based on that of [12], and execute the function (based on a routine written by Brian
Borchers)

[blk,A,C,b,X0,y0,Z0] = read_sdpa(’filename’).

The user can easily learn how to use this software package by reading the script
file demo.m, which illustrates how the solvers sdp.m and sdphlf.m can be used to
solve a few SDP examples. The next section shows how sdp.m and sdphlf.m can
be used to solve random problems generated by randsdp.m, graph.m, and maxcut .m,
and the resulting output, for several of our algorithms.

24

www.manaraa.com



This software package also includes example files for the following classes of SDPs.
In these files, unless otherwise stated, the input variables feas and solve are used
as follows:

foas — 0 corresponds to the initial iterate given in (43),
] 1 corresponds to a feasible initial iterate;

0 only gives the input data blk,A,C,b,X0,y0,Z0 for sdp.m or sdphlf.m,
solve =< 1 solves the given problem by an infeasible path-following algorithm,
2 solves the given problem by a homogeneous self-dual algorithm.

If solve is positive, the output variable objval is the objective value of the associ-
ated optimization problem, and the output variables after objval give approximately
optimal solutions to the original problem and its dual (or possibly indications of in-
feasibility).

Here are our examples.

(1) Random SDP: The associated M-file is randsdp.m, with initial line
[blk,A,C,b,X0,y0,Z0,0bjval,X,y,Z] = randsdp(de,sp,di,m,feas,solve),

where the input parameters describe a particular block diagonal structure for each Ay
and C'. Specifically, the vector de is a list of dimensions of dense blocks; the vector sp
is a list of dimensions of (small) subblocks in a single sparse block; and the scalar di
is the size of the diagonal block. The scalar m is the number of equality constraints.

There is an alternative function randinfsdp.m that generates primal or dual in-
feasible problems. The associated M-file has the initial line

[blk,A,C,b,X0,y0,Z0,0bjval,X,y,Z] = randinfsdp(de,sp,di,m,infeas,solve).

The input variables de, sp, di, and solve all have the same meaning as in randsdp . m,
but the variable infeas is used as follows:

1 if want primal infeasible pair of problems,

inf _ : . . .
inteas { 2 if want dual infeasible pair of problems.

(2) Norm minimization problem [30]:

m
i B B
i, 1Bo + ]; Tk B ||,

where the By, k = 0,...,m, are p X ¢ matrices (possibly complex, in which case
x ranges over C™) and the norm is the matrix 2-norm. The associated M-file is
norm min.m, with initial line

[blk,A,C,b,X0,y0,Z0,0bjval,x] = normmin(B,feas,solve),
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where B is a cell array with B{k+ 1} = By, k = 0,...,m
(3) Chebyshev approximation problem for a matrix [28]:
min [[p(B)].

where the minimization is over the class of monic polynomials of degree m, B is a
square matrix (possibly complex) and the norm is the matrix 2-norm. The associated
M-file is chebymat .m, with initial line

[blk,A,C,b,X0,y0,Z0,0bjval,p] = chebymat(B,m,feas,solve).
See also igmres.m, which solves an analogous problem with p normalized such that
p(0) = 1.
(4) Max-Cut problem [14]:
miny L e X
s.t. diag(X) =e/4, X >0,

where L = B — Diag(Be), e is the vector of all ones and B is the weighted adjacency
matrix of a graph [14]. The associated M-file is maxcut .m, with initial line

[blk,A,C,b,X0,y0,Z0,0bjval,X] = maxcut(B,feas,solve).
See also graph.m, from which the user can generate a weighted adjacency matrix B
of a random graph.
(5) ETP (Educational testing problem) [30]:
max . pN eld
s.t. B —Diag(d) =0, d>0,

where B is a real N x N positive definite matrix and e is again the vector of all ones.
The associated M-file is etp.m, with initial line

[blk,A,C,b,X0,y0,Z0,0bjval,d] = etp(B,feas,solve).

(6) Lovasz 6 function for a graph [2]:

miny C e X
st. AjeX =1,
Ape X =0, k=2,...,m,
X =0,
where C' is the matrix of all minus ones, Ay = I, and Ay = eie;-r + ejez-T, where the

(k—1)st edge of the given graph (with m — 1 edges) is from vertex i to vertex j. Here
e; denotes the ith unit vector. The associated M-file is theta.m, with initial line
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[blk,A,C,b,X0,y0,Z0,0bjval,X] = theta(B,feas,solve),
where B is the adjacency matrix of the graph.
(7) Logarithmic Chebyshev approximation problem [30]:

. l T _l
min ér}CaSXN\ og(by z) — log(fk)|,

where B = [by by --- by]T is a real N x m matrix and f is a real N-vector. The
associated M-file is logcheby.m, with initial line

[blk,A,C,b,X0,y0,Z0,0bjval,x] = logcheby(B,f,feas,solve).

(8) Chebyshev approximation problem in the complex plane [28]:

i d
min | max, p(dg)|,

where the minimization is over the class of monic polynomials of degree m and
{dy,...,dn} is a given set of points in the complex plane. The associated M-file
is chebyinf .m, with initial line

[blk,A,C,b,X0,y0,Z0,0bjval,p] = chebyinf(d,m,feas,solve),

whered =[d; dy ... dy.

See also cheby0.m, which solves an analogous problem with p normalized such that
p(0) =1.

(9) Control and system problem [30]:

maxy p t
st. —BI'P - PB, =0, k=1,...,L
P>=1tI, I>= P, P=PT,

where By, k= 1,..., L, are square real matrices of the same dimension. The associ-
ated M-file is control.m, with initial line

[blk,A,C,b,X0,y0,Z0,0bjval,P] = control(B,solve),

where B is a cell array with B{k} = By, k = 1,...,L.
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7 Sample Runs

Assuming that the current directory is SDPT3-2. 1, we will now generate some sample

runs to illustrate how our package might be used.

>> randn(’seed’,0) J, reset random generator to its initial seed.
>> rand(’seed’,0) Y%

>> startup % set up default parameters in the OPTIONS structure,
>> % set paths

>>

>> %% random SDP %%

>>

>> de=[20]; sp=[]; di=[]; % one 20X20 dense block, no sparse/diag blocks
>> m=20; % 20 equality constraints

>> feas=1; % feasible initial iterate

>> solve=0; % do not solve the problem, just generate data.

>> [blk,A,C,b,X0,y0,Z0] = randsdp(de,sp,di,m,feas,solve);
>>

>> OPTIONS.gaptol=1e-12; Y use a non-default relative accuracy tolerance

>> OPTIONS.vers=1; % use the AHO direction
>> % solve using IPC
>> [obj,X,y,Z2] = sdp(blk,A,C,b,X0,y0,Z0,0PTIONS);

>k >k >k >k >k >k %k %k %k %k %k %k %k %k %k >k >k >k 5k 5k 5k 5k 5k %k %k 5k >k >k %k >k >k >k >k 5k 5k %k %k %k %k %k %k %k >k >k >k >k > 5k 5k 5k %k %k >k %k %k %k >k 5k 5% > >k >k %k %k %k %k %

Infeasible path-following algorithms
sk s sk o o o ok ok sk sk o o o o ok sk sk sk ok ok ok sk sk sk o ok sk sk o o ok sk sk o sk ok ks o o ok sk s o o ok sk sk o o sk sk sk ok ok sk s o e ok sk sk o o

version predcorr gam expon use_corrprim sw2PC_tol scale_data
1 1 0.000 3 0 Inf 0

it pstep dstep p_infeas d_infeas gap obj sigma

0.000 0.000 1.8e-16 8.9e-17 8.2e+03 2.545530e+03
1 0.002 0.029 5.8e-16 8.7e-17 8.2e+03 2.569574e+03 0.998

12 0.988 0.988 1.3e-13 1.5e-16 1.5e-09 -1.058223e+03 0.000
13 0.967 0.974 8.8e-14 1.4e-16 8.7e-11 -1.058223e+03 0.028

Stop: max(relative gap, infeasibilities) < 1.00e-12

number of iterations = 13

gap = 8.73e-11
relative gap = 8.2be-14
infeasibilities = 8.76e-14
Total CPU time =4.9

CPU time per iteration = 0.4

termination code = 0

chol pred steplen corr steplen misc
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An explanation for the notations used in the iteration output above is in order:

it: the iteration number.

pstep, dstep: denote the step-lengths a and (3, respectively.

p-infeas, d_infeas: denote the relative primal infeasibility ||r,||/ max(1, ||b]|) and
dual infeasibility ||Rq|| ¢/ max(1,||C||#), respectively.

gap: the duality gap X ¢ Z.

obj: the mean objective value (C o X + bTy)/2.

sigma: the value used for the centering parameter o.

To give the reader an idea of the amount of CPU time spent in various steps of our algorithms,
we give the breakdowns of the CPU time spent in algorithm IPC, and this is reported in the
last line of the summary table above.

>> randn(’seed’,0); rand(’seed’,0);

>> % next, generate new data with a different block structure
>> feas=0; 7% and use the (infeasible) initial iterate given in (42)
>> [blk,A,C,b,X0,y0,Z0] = randsdp([20 15],[4 3 3],5,30,feas,solve);

>>
>> OPTIONS.vers=4; Y% use the GT direction
>> % solve using HPC

>> [obj,X,y,Z,tau,kap] = sdphlf(blk,A,C,b,X0,y0,Z0,1,1,0PTIONS);

3k 5k 3k 5k 3k >k 3k >k 3k >k 3k >k 3k >k 5k >k 5k >k >k 5k >k 5k >k 5k >k >k >k >k 5k >k 3k >k 3k >k >k >k >k >k >k 3k > >k 5k >k 5k >k 3k >k >k >k >k > >k 3k >k %k > >k > >k % %k %k % %k % %

Homogeneous self-dual algorithms
sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk sk sk sk sk s o o o o ok ok ook ok sk sk sk sk s s s s s s ok ok ok ok ok ok sk sk sk sk sk s s sk sk ke k

version predcorr gam expon use_corrprim sw2PC_tol scale_data

4 1 0.000 1 0 Inf 0
it pstep dstep p_infeas d_infeas gap obj sigma
0 0.000 0.000 1.8e+01 9.1e-01 5.4e+05 1.539414e+05
1 0.865 1.000 7.6e+00 3.1e-01 1.9e+05 6.344746e+04 0.376
2 1.000 1.000 2.3e+00 9.5e-02 5.6e+04 1.925616e+04 0.321

.067248e+02 0.019
.067248e+02 0.014

14 1.000 1.000 2.0e-11 4.2e-15 3.0e-09
15 0.998 1.000 9.1e-12 1.8e-16 4.6e-11

w w

Stop: relative gap < 0.2%infeasibility

number of iterations = 15

gap = 4.61e-11
relative gap = 1.50e-13
infeasibilities = 9.08e-12

Total CPU time 20.6
CPU time per iteration = 1.4
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termination code = 0

chol pred steplen corr steplen misc
0.5 74.2 4.1 14.4 4.1 2.7

>> Y%%%% MAXCUT PROBLEM %%%%%
>>

>> randn(’seed’,0); rand(’seed’,0);

>> B = graph(50,0.3); % generate an adjacency matrix of a 50 node graph

>> % where each edge is present with probability 0.3
>> feas=1; % use a feasible initial iterate;

>> solve=1; % generate data, then solve the problem using IPC

>> % with default parameters set up for the OPTIONS structure
>> % in parameters.m but with the NT direction

>> % next solve the maxcut problem defined on the given graph
>>

>> [blk,A,C,b,X0,y0,Z0,0bjval,X] = maxcut(B,feas,solve);

sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk sk sk sk sk s s o o o ok ok ok ook ok sk sk sk sk s s s s s s ok ok ok ok ok sk sk sk sk sk sk s s s ok ke k
Infeasible path-following algorithms
sk sk ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk sk sk sk sk o o sk ok ok ok ok sk sk sk sk sk sk sk sk sk sk s s ok ok ok ok sk sk sk sk sk sk sk sk s sk sk sk ok ok k
version predcorr gam expon use_corrprim sw2PC_tol scale_data
2 1 0.000 1 0 Inf 0

it pstep dstep p_infeas d_infeas gap obj sigma
0.000 0.000 0.0e+00 0.0e+00 2.2e+02 -2.952000e+02

1.000 1.1e-15 5.2e-17 7.1le+01 -2.383341e+02 0.321

0.699 1.000 3.9e-16 7.3e-17 4.6e+01 -2.542980e+02 0.475

-
-
o
o
o

9 1.000 1.000 1.9e-13 5.4e-17 3.8e-06 -2.527228e+02 0.097
10 1.000 1.000 2.8e-13 9.3e-17 1.8e-07 -2.527228e+02 0.048

Stop: max(relative gap, infeasibilities) < 1.00e-08

number of iterations =10

gap = 1.82e-07
relative gap = 7.21e-10
infeasibilities = 2.78e-13
Total CPU time = 2.0

CPU time per iteration = 0.2
termination code = 0

chol pred steplen corr steplen misc
2.5 34.2 16.7 21.7 17.5 7.5
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8 Specialized routines for computing the Schur
complement matrix

For SDP problems where the matrices Aq,---, A, are all low rank matrices except
possibly a few of them, we can speed up the computation of the Schur complement
matrix M by exploiting this low rank structure. As an example, we will discuss
how this is done for the case of symmetric rank one matrices in computing the NT
direction. Suppose

T .
A; = aia; , i=1,---,m.

Given that M;; = A; « WA;W for the case of the NT direction, where W is the NT
scaling matrix, we have

M;; = Tr (aia;frWaja;FW)
= Tr ((aZTWa])(aJTWaZ))
= (al Way)*

Thus computing M for the NT direction in this case requires at most 2mn? 4+ m?n
flops, to leading orders. Similar simplifications can be done for the HKM direction.

For the GT direction, exploiting low rank structures in the SDP data is still
possible but is more involved compared to the HKM and NT directions. The reason
for such a difference is that the matrices Dy, D9 in (16) are respectively the matrix
of ones and the identity matrix for the case of the HKM and NT directions, whereas
D is a dense matrix and Dy = [ in the case of the GT direction. More precisely,
for the case where all the matrices Ay, - -, A, are all symmetric rank one matrices,
we have for the GT direction,

= T ([(@a]) o Di] (a;a])),

where a;, = Ra;, 1 = 1,---,m, for some matrix R.

For the AHO direction, where D1 and D5 are both dense matrices, exploiting low
rank structures in the data becomes even more complicated. We shall not elaborate
further on this issue but leave it for future work.

In our package, we include the following specialized routines for computing the
Schur complement matrix for the HKM and N'T directions for a few classes of the SD-
PLIB problems [6], namely, the mcp, gpp, eqG, and theta problems. The specialized
function files are as follows:

mcpHKMsch.m gppHKMsch.m eqGHKMsch.m thetaHKMsch.m
mcpNTsch.m gppNTsch.m eqGNTsch.m thetaNTsch.m.
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These function files have a form similar to thetaHKMsch.m, whose initial line is

[schur,hRd] = thetaHKMsch(X,Zinv,Rd,schurfun parms).

The specialized routine can be used to replace the computation of the Schur comple-
ment matrix inside the main solver sdp.m or sdphlf.m by passing the name of the
specialized function file into the main solver through the structure array OPTIONS,
specifically, by setting OPTIONS. schurfun to be the string containing the initial line
of the function file, for example,

OPTIONS.schurfun = ’thetaHKMsch(X,Zinv,Rd,schurfun_parms)’.

The input argument schurfun parms can be omitted if there are no extra input
parameter variables needed besides X and Zinv. However, if in addition to X and Zinv,
extra parameter variables are needed in the specialized routine, then these parameter
variables can be passed into the specialized routine while executing inside sdp.m or
sdphlf .m through the structure array OPTIONS by assigning

OPTIONS.schurfun parms

to be a cell array containing all the required extra parameter variables.

Assuming that the current directory is SDPT3-2. 1 and its subdirectory Specialschur
contains the specialized routines, we will now illustrate how the specialized routines
can be used in sdp.m.

>> randn(’seed’,0); rand(’seed’,0);
>> startup; % add appropriate path to MATLAB path.
>> [blk,A,C,b] = read_sdpa(’./sdplib/theta3.dat-s’); % read in SDP data from
% subdirectory sdplib.
>> [X0,y0,Z0] = infeaspt(blk,A,C,b); % get starting point.
>> OPTIONS.vers = 2;
>> OPTIONS.schurfun = ’thetaHKMsch(X,Zinv,Rd,schurfun_parms)’;
>> OPTIONS.schurfun_parms = listA; ), assume that the extra parameter variable
% listA is already computed.
% It can be computed via:
% spdensity = 1;
% [dummy,listA,permA] = nonzerolist(blk,A,spdensity);
% listA(permA) = listA;

>> [obj,X,y,Z] = sdp(blk,A,C,b,X0,y0,Z0,0PTIONS) ;

sk sk sk o o ok ok ok sk sk sk o s ok ok sk sk sk sk sk sk ok sk sk sk s ok sk sk s ok sk sk s ok ok sk sk o o sk sk s o sk sk sk ok ek sk sk ok e ok sk sk ok ok
Infeasible path-following algorithms

user supplied Schur routine: thetaHKMsch(X,Zinv,Rd,schurfun_parms)

>k >k >k >k >k >k >k %k %k %k %k %k %k %k %k %k >k >k 5k 5k 5k 5k 5k %k %k 5k >k >k %k >k >k >k >k 5k 5k %k %k %k %k %k %k %k >k >k >k >k > 5k 5k 5k %k 5k %k %k %k %k >k >k 5% > > > %k %k %k %k %

version predcorr gam expon use_corrprim sw2PC_tol scale_data
2 1 0.000 1 0 Inf 0
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it pstep dstep p_infeas d_infeas gap obj sigma

0 0.000 0.000 1.3e+04 1.5e+00 1.6e+05 -6.590097e+03
1 0.130 0.200 1.1e+04 1.2e+00 1.4e+05 -9.645481e+04 0.417

13 1.000 1.000 4.8e-12 7.5e-17 1.6e-06 -4.216698e+01 0.100
14 1.000 1.000 8.5e-12 7.6e-17 2.4e-08 -4.216698e+01 0.015

Stop: max(relative gap, infeasibilities) < 1.00e-08

number of iterations = 14

gap = 2.44e-08
relative gap = 5.79e-10
infeasibilities = 8.52e-12
Total CPU time = 244.8
CPU time per iteration = 17.5
termination code = 0

chol pred steplen corr steplen misc
0.2 89.2 1.7 6.8 1.7 0.4

9 Numerical results

The tables below show the performance of the algorithms discussed in Section 2 and
3 on the first eight SDP examples described in Section 6. The result for each example
is based on ten random instances with normally distributed data generated via the
MATLAB command randn. The initial iterate for each problem is infeasible, generated
from infeaspt.m with the default option. Note that the same set of random instances
is used throughout for each example.

In Tables 2 and 3, we use the default values (given in Section 5) for the parameters
used in the algorithms, except for OPTIONS. gaptol and OPTIONS.scale _data, which
are set to 1e-13 and 1, respectively.

In our experiments, let us call an SDP instance successfully solved by Algorithm
IPC if the algorithm manages to reduce the relative duality gap X ¢ Z/ max(1, |C'e X|)
to less than 107 while at the same time the infeasibility measure ¢ is less than the
relative duality gap. For Algorithm HPC, we call an SDP instance successfully solved
if the relative duality gap is less than 10~ while the infeasibility measure ¢ is at most
5 times more than the relative duality gap. We do not terminate the algorithms when
this measure of success is attained.

All of the SDP instances (a total of 640) considered in our experiments were suc-
cessfully solved, except for only three ETP instances and one Logarithmic Chebyshev
instance where Algorithm HPC using the AHO direction failed. This indicates that
our algorithms are probably quite robust.
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The results in Tables 2 and 3 show that the behavior of Algorithms IPC and HPC
are quite similar in terms of efficiency (as measured by the number of iterations) and
accuracy on all the the four search directions we implemented. Note that we give
the number of iterations and the CPU time required to reduce the duality gap by
a factor of 10'Y compared to its original value (the relative gap may then be still
too large to conclude “success”), and also the minimum relative gap achieved by each
method. For both algorithms, the AHO and GT directions are more efficient and more
accurate than the HKM and NT directions, with the former and latter pairs having
similar behavior in terms of efficiency and accuracy. Efficiency can alternatively be
measured by the total CPU time required. The performances of Algorithms IPC and
HPC are also quite similar in terms of the CPU time taken to reduce the duality
gap by a prescribed factor on all the four directions. But in this case, the NT and
HKM directions are the fastest, followed by the GT direction which is about 20% to
30% slower, and the AHO direction is the slowest — it is usually at least about 60%
slower.
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Ave. no. of iterations Ave. CPU time (sec.)
Algorithm TPC to reduce the duality to reduce the duality Accuracy
gap by 10'? gap by 100 mean(|log; (X & Z)])
AHO GT HKM NT || AHO GT HKM NT || AHO GT HKM NT
random n =50
Spp S 106 11.2 127 117 158 121 111 107| 74 64 6.1 58
Norm min. n =100
91 94 108 110 394 293 234 265 11.9 124 96 9.1
problem m =26
Cheby. approx. | n =100 88 93 108 115 379 284 248 275 | 137 136 108 105
of a real matrix m =26
Maxcut ’;fgg 99 105 115 117 113 79 58 62 | 109 98 90 87
n_ =100
ETP - 171 175 203 1991 256 173 142 1441 88 88 71 72
Lovasz 6 n =30 1.7 117 121 121 53.3 299 238 218 116 109 104 105
function m = 220
Log. Cheby. no=300 1196 130 137 137 246 212 152 182 96 97 97 98
problem m =5l
Chebi‘nagprox' ;figo 99 102 111 113 | 157 144 11.0 136 | 129 130 109 10.9

Table 2: Computational results on different classes of SDP for Algorithm IPC. Ten random instances are
considered for each class. The computations were done on a DEC AlphaStation/500 (333MHz). The number
X e 7 above is the smallest number such that relative duality gap X e Z/(1+ |C e X|) is less than 10~% and the
infeasibility measure ¢ is less than the relative duality gap.
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Ave. no. of iterations Ave. CPU time (sec.)
Algorithm HPC to reduce the duality to reduce the duality Accuracy
gap by 1010 gap by 101 mean(|log;,(X e Z)]|)
AHO GT HKM NT || AHO GT HKM NT || AHO GT HKM NT
random n =50
SDp - 104 109 114 1101 157 117 97 97| 88 81 64 6.0
Norm min. no =100 1409 102 119 115 487 323 258 9277 114 115 96 9.0
problem m =26
Cheby. approx. | n =100 | 400 07 138 111 444 316 269 264 137 128 111 105
of a real matrix m =26
Maxcut ”m fgg 99 97 111 106 11.8 76 58 58 | 108 101 92 86
ETP :‘7?;80 14.3* 153 171 166 | 21.8* 155 121 1211 94* 95 72 6.9
Lovéasz 6 n =30
. 115 117 129 128 | 446 298 248 2241 122 115 110 105
function m = 220
Log. Cheby. no=300 B0 125 132 13.2 | 317 213 154 184 || 122% 129 124 124
problem m =5l
Chebg'naé’pmx' . fi(l)o 98 96 101 100 | 165 145 101 125 135 133 115 115

Table 3: Same as Table 2, but for the homogenous predictor-corrector algorithm, Algorithm HPC. The duality
gap X e Z above is the smallest number such that the relative duality gap X e 7 /(1+ |C e X|) is less than 105
and the infeasibility measure ¢ is at most 5 times more than the relative duality gap.

* Three of the ETP instances fail because the infeasibility measure ¢ is consistently 5 times more than the
relative duality gap X e Z/(1+ |C e X|) when the relative duality gap is less than 107°. One of the Log. Cheby.
instances fails due to step lengths going below 10~%. The numbers reported here are based on the successful
instances.
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Finally, we report the performance of our algorithms on a collection of SDPLIB
problems [6] in Table 4. We use the default values for the parameters used in the
algorithms. The figures given for each run are number of iterations, precision (—k
indicates relative infeasibility and relative duality gap below 107*), and CPU time in

seconds.

The following results for Algorithm IPC are obtained from a Pentium II PC,
with 400MHz CPU and 256M RAM, running Linux.

arch8
control7
controll0
controlll
gpp250.4
gpp500.4
mcp250.1
mcp500.1
qap9
qapl0
ss30
theta3
thetad
thetab
truss8
equalG11
maxG1l1
maxG51
qpG11

25
24

GT

20 -8 597 20
22 -5 821 22
24 -6 4543 23
24 -6 7118 23
17 -9 2030 16
17 -9 36979 14
13 -9 1446 12
16 -9 33397 13
15 -8 435 16
14 -8 891 14
18 -8 3210 19
13 -8 1950 12
156 -9 10625 13
t t

24 -7 985 27
t t

16 -9 197092 t

t t

m m

1301
7183
11686
5814
108356
3237
72025
811
1660
6061
3380
15962

1567

m: available memory exceeded.
t: problem was terminated because it was taking too long to finish.
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